Deguet, Anton
Gravity Compensation of the dVRK-Si Patient Side Manipulator based on Dynamic Model Identification
Zhou, Haoying, Yang, Hao, Deguet, Anton, Fichera, Loris, Wu, Jie Ying, Kazanzides, Peter
The da Vinci Research Kit (dVRK, also known as dVRK Classic) is an open-source teleoperated surgical robotic system whose hardware is obtained from the first generation da Vinci Surgical System (Intuitive, Sunnyvale, CA, USA). The dVRK has greatly facilitated research in robot-assisted surgery over the past decade and helped researchers address multiple major challenges in this domain. Recently, the dVRK-Si system, a new version of the dVRK which uses mechanical components from the da Vinci Si Surgical System, became available to the community. The major difference between the first generation da Vinci and the da Vinci Si is in the structural upgrade of the Patient Side Manipulator (PSM). Because of this upgrade, the gravity of the dVRK-Si PSM can no longer be ignored as in the dVRK Classic. The high gravity offset may lead to relatively low control accuracy and longer response time. In addition, although substantial progress has been made in addressing the dynamic model identification problem for the dVRK Classic, further research is required on model-based control for the dVRK-Si, due to differences in mechanical components and the demand for enhanced control performance. To address these problems, in this work, we present (1) a novel full kinematic model of the dVRK-Si PSM, and (2) a gravity compensation approach based on the dynamic model identification.
Surgical Robot Transformer (SRT): Imitation Learning for Surgical Tasks
Kim, Ji Woong, Zhao, Tony Z., Schmidgall, Samuel, Deguet, Anton, Kobilarov, Marin, Finn, Chelsea, Krieger, Axel
We explore whether surgical manipulation tasks can be learned on the da Vinci robot via imitation learning. However, the da Vinci system presents unique challenges which hinder straight-forward implementation of imitation learning. Notably, its forward kinematics is inconsistent due to imprecise joint measurements, and naively training a policy using such approximate kinematics data often leads to task failure. To overcome this limitation, we introduce a relative action formulation which enables successful policy training and deployment using its approximate kinematics data. A promising outcome of this approach is that the large repository of clinical data, which contains approximate kinematics, may be directly utilized for robot learning without further corrections. We demonstrate our findings through successful execution of three fundamental surgical tasks, including tissue manipulation, needle handling, and knot-tying.
An Effectiveness Study Across Baseline and Neural Network-based Force Estimation Methods on the da Vinci Research Kit Si System
Yang, Hao, Acar, Ayberk, Xu, Keshuai, Deguet, Anton, Kazanzides, Peter, Wu, Jie Ying
In this study, we further investigate the robustness and generalization ability of an neural network (NN) based force estimation method, using the da Vinci Research Kit Si (dVRK-Si). To evaluate our method's performance, we compare the force estimation accuracy with several baseline methods. We conduct comparative studies between the dVRK classic and dVRK-Si systems to benchmark the effectiveness of these approaches. We conclude that the NN-based method provides comparable force estimation accuracy across the two systems, as the average root mean square error (RMSE) over the average range of force ratio is approximately 3.07% for the dVRK classic, and 5.27% for the dVRK-Si. On the dVRK-Si, the force estimation RMSEs for all the baseline methods are 2 to 4 times larger than the NN-based method in all directions. One possible reason is, we made assumptions in the baseline methods that static forces remain the same or dynamics is time-invariant. These assumptions may hold for the dVRK Classic, as it has pre-loaded weight and maintains horizontal self balance. Since the dVRK-Si configuration does not have this property, assumptions do not hold anymore, therefore the NN-based method significantly outperforms.
Integrating 3D Slicer with a Dynamic Simulator for Situational Aware Robotic Interventions
Sahu, Manish, Ishida, Hisashi, Connolly, Laura, Fan, Hongyi, Deguet, Anton, Kazanzides, Peter, Creighton, Francis X., Taylor, Russell H., Munawar, Adnan
Image-guided robotic interventions represent a transformative frontier in surgery, blending advanced imaging and robotics for improved precision and outcomes. This paper addresses the critical need for integrating open-source platforms to enhance situational awareness in image-guided robotic research. We present an open-source toolset that seamlessly combines a physics-based constraint formulation framework, AMBF, with a state-of-the-art imaging platform application, 3D Slicer. Our toolset facilitates the creation of highly customizable interactive digital twins, that incorporates processing and visualization of medical imaging, robot kinematics, and scene dynamics for real-time robot control. Through a feasibility study, we showcase real-time synchronization of a physical robotic interventional environment in both 3D Slicer and AMBF, highlighting low-latency updates and improved visualization.
Integrating Artificial Intelligence and Augmented Reality in Robotic Surgery: An Initial dVRK Study Using a Surgical Education Scenario
Long, Yonghao, Cao, Jianfeng, Deguet, Anton, Taylor, Russell H., Dou, Qi
The demand of competent robot assisted surgeons is progressively expanding, because robot-assisted surgery has become progressively more popular due to its clinical advantages. To meet this demand and provide a better surgical education for surgeon, we develop a novel robotic surgery education system by integrating artificial intelligence surgical module and augmented reality visualization. The artificial intelligence incorporates reinforcement leaning to learn from expert demonstration and then generate 3D guidance trajectory, providing surgical context awareness of the complete surgical procedure. The trajectory information is further visualized in stereo viewer in the dVRK along with other information such as text hint, where the user can perceive the 3D guidance and learn the procedure. The proposed system is evaluated through a preliminary experiment on surgical education task peg-transfer, which proves its feasibility and potential as the next generation of robot-assisted surgery education solution.