Goto

Collaborating Authors

 Deguest, Romain


Particle Filter-based Policy Gradient in POMDPs

Neural Information Processing Systems

Our setting is a Partially Observable Markov Decision Process with continuous state, observation and action spaces. Decisions are based on a Particle Filter for estimating the belief state given past observations. We consider a policy gradient approach for parameterized policy optimization. For that purpose, we investigate sensitivity analysis of the performance measure with respect to the parameters of the policy, focusing on Finite Difference (FD) techniques. We show that the naive FD is subject to variance explosion because of the non-smoothness of the resampling procedure. We propose a more sophisticated FD method which overcomes this problem and establish its consistency.


Sensitivity analysis in HMMs with application to likelihood maximization

Neural Information Processing Systems

This paper considers a sensitivity analysis in Hidden Markov Models with continuous state and observation spaces. We propose an Infinitesimal Perturbation Analysis (IPA) on the filtering distribution with respect to some parameters of the model. We describe a methodology for using any algorithm that estimates the filtering density, such as Sequential Monte Carlo methods, to design an algorithm that estimates its gradient. The resulting IPA estimator is proven to be asymptotically unbiased, consistent and has computational complexity linear in the number of particles. We consider an application of this analysis to the problem of identifying unknown parameters of the model given a sequence of observations. We derive an IPA estimator for the gradient of the log-likelihood, which may be used in a gradient method for the purpose of likelihood maximization. We illustrate the method with several numerical experiments.