Degenne, Rémy
Structure Adaptive Algorithms for Stochastic Bandits
Degenne, Rémy, Shao, Han, Koolen, Wouter M.
We study reward maximisation in a wide class of structured stochastic multi-armed bandit problems, where the mean rewards of arms satisfy some given structural constraints, e.g. linear, unimodal, sparse, etc. Our aim is to develop methods that are flexible (in that they easily adapt to different structures), powerful (in that they perform well empirically and/or provably match instance-dependent lower bounds) and efficient in that the per-round computational burden is small. We develop asymptotically optimal algorithms from instance-dependent lower-bounds using iterative saddle-point solvers. Our approach generalises recent iterative methods for pure exploration to reward maximisation, where a major challenge arises from the estimation of the sub-optimality gaps and their reciprocals. Still we manage to achieve all the above desiderata. Notably, our technique avoids the computational cost of the full-blown saddle point oracle employed by previous work, while at the same time enabling finite-time regret bounds. Our experiments reveal that our method successfully leverages the structural assumptions, while its regret is at worst comparable to that of vanilla UCB.
Non-Asymptotic Pure Exploration by Solving Games
Degenne, Rémy, Koolen, Wouter M., Ménard, Pierre
Pure exploration (aka active testing) is the fundamental task of sequentially gathering information to answer a query about a stochastic environment. Good algorithms make few mistakes and take few samples. Lower bounds (for multi-armed bandit models with arms in an exponential family) reveal that the sample complexity is determined by the solution to an optimisation problem. The existing state of the art algorithms achieve asymptotic optimality by solving a plug-in estimate of that optimisation problem at each step. We interpret the optimisation problem as an unknown game, and propose sampling rules based on iterative strategies to estimate and converge to its saddle point. We apply no-regret learners to obtain the first finite confidence guarantees that are adapted to the exponential family and which apply to any pure exploration query and bandit structure. Moreover, our algorithms only use a best response oracle instead of fully solving the optimisation problem.
Pure Exploration with Multiple Correct Answers
Degenne, Rémy, Koolen, Wouter M.
We determine the sample complexity of pure exploration bandit problems with multiple good answers. We derive a lower bound using a new game equilibrium argument. We show how continuity and convexity properties of single-answer problems ensures that the Track-and-Stop algorithm has asymptotically optimal sample complexity. However, that convexity is lost when going to the multiple-answer setting. We present a new algorithm which extends Track-and-Stop to the multiple-answer case and has asymptotic sample complexity matching the lower bound.
Bridging the gap between regret minimization and best arm identification, with application to A/B tests
Degenne, Rémy, Nedelec, Thomas, Calauzènes, Clément, Perchet, Vianney
State of the art online learning procedures focus either on selecting the best alternative ("best arm identification") or on minimizing the cost (the "regret"). We merge these two objectives by providing the theoretical analysis of cost minimizing algorithms that are also delta-PAC (with a proven guaranteed bound on the decision time), hence fulfilling at the same time regret minimization and best arm identification. This analysis sheds light on the common observation that ill-callibrated UCB-algorithms minimize regret while still identifying quickly the best arm. We also extend these results to the non-iid case faced by many practitioners. This provides a technique to make cost versus decision time compromise when doing adaptive tests with applications ranging from website A/B testing to clinical trials.
Bandits with Side Observations: Bounded vs. Logarithmic Regret
Degenne, Rémy, Garcelon, Evrard, Perchet, Vianney
We consider the classical stochastic multi-armed bandit but where, from time to time and roughly with frequency $\epsilon$, an extra observation is gathered by the agent for free. We prove that, no matter how small $\epsilon$ is the agent can ensure a regret uniformly bounded in time. More precisely, we construct an algorithm with a regret smaller than $\sum_i \frac{\log(1/\epsilon)}{\Delta_i}$, up to multiplicative constant and loglog terms. We also prove a matching lower-bound, stating that no reasonable algorithm can outperform this quantity.
Combinatorial semi-bandit with known covariance
Degenne, Rémy, Perchet, Vianney
The combinatorial stochastic semi-bandit problem is an extension of the classical multi-armed bandit problem in which an algorithm pulls more than one arm at each stage and the rewards of all pulled arms are revealed. One difference with the single arm variant is that the dependency structure of the arms is crucial. Previous works on this setting either used a worst-case approach or imposed independence of the arms. We introduce a way to quantify the dependency structure of the problem and design an algorithm that adapts to it. The algorithm is based on linear regression and the analysis develops techniques from the linear bandit literature. By comparing its performance to a new lower bound, we prove that it is optimal, up to a poly-logarithmic factor in the number of pulled arms.