Goto

Collaborating Authors

 Deb, Kalyanmoy


A Novel Pareto-optimal Ranking Method for Comparing Multi-objective Optimization Algorithms

arXiv.org Artificial Intelligence

As the interest in multi- and many-objective optimization algorithms grows, the performance comparison of these algorithms becomes increasingly important. A large number of performance indicators for multi-objective optimization algorithms have been introduced, each of which evaluates these algorithms based on a certain aspect. Therefore, assessing the quality of multi-objective results using multiple indicators is essential to guarantee that the evaluation considers all quality perspectives. This paper proposes a novel multi-metric comparison method to rank the performance of multi-/ many-objective optimization algorithms based on a set of performance indicators. We utilize the Pareto optimality concept (i.e., non-dominated sorting algorithm) to create the rank levels of algorithms by simultaneously considering multiple performance indicators as criteria/objectives. As a result, four different techniques are proposed to rank algorithms based on their contribution at each Pareto level. This method allows researchers to utilize a set of existing/newly developed performance metrics to adequately assess/rank multi-/many-objective algorithms. The proposed methods are scalable and can accommodate in its comprehensive scheme any newly introduced metric. The method was applied to rank 10 competing algorithms in the 2018 CEC competition solving 15 many-objective test problems. The Pareto-optimal ranking was conducted based on 10 well-known multi-objective performance indicators and the results were compared to the final ranks reported by the competition, which were based on the inverted generational distance (IGD) and hypervolume indicator (HV) measures. The techniques suggested in this paper have broad applications in science and engineering, particularly in areas where multiple metrics are used for comparisons. Examples include machine learning and data mining.


Discovering Adaptable Symbolic Algorithms from Scratch

arXiv.org Artificial Intelligence

Autonomous robots deployed in the real world will need control policies that rapidly adapt to environmental changes. To this end, we propose AutoRobotics-Zero (ARZ), a method based on AutoML-Zero that discovers zero-shot adaptable policies from scratch. In contrast to neural network adaptation policies, where only model parameters are optimized, ARZ can build control algorithms with the full expressive power of a linear register machine. We evolve modular policies that tune their model parameters and alter their inference algorithm on-the-fly to adapt to sudden environmental changes. We demonstrate our method on a realistic simulated quadruped robot, for which we evolve safe control policies that avoid falling when individual limbs suddenly break. This is a challenging task in which two popular neural network baselines fail. Finally, we conduct a detailed analysis of our method on a novel and challenging non-stationary control task dubbed Cataclysmic Cartpole. Results confirm our findings that ARZ is significantly more robust to sudden environmental changes and can build simple, interpretable control policies.


Revisiting Residual Networks for Adversarial Robustness: An Architectural Perspective

arXiv.org Artificial Intelligence

Efforts to improve the adversarial robustness of convolutional neural networks have primarily focused on developing more effective adversarial training methods. In contrast, little attention was devoted to analyzing the role of architectural elements (such as topology, depth, and width) on adversarial robustness. This paper seeks to bridge this gap and present a holistic study on the impact of architectural design on adversarial robustness. We focus on residual networks and consider architecture design at the block level, i.e., topology, kernel size, activation, and normalization, as well as at the network scaling level, i.e., depth and width of each block in the network. In both cases, we first derive insights through systematic ablative experiments. Then we design a robust residual block, dubbed RobustResBlock, and a compound scaling rule, dubbed RobustScaling, to distribute depth and width at the desired FLOP count. Finally, we combine RobustResBlock and RobustScaling and present a portfolio of adversarially robust residual networks, RobustResNets, spanning a broad spectrum of model capacities. Experimental validation across multiple datasets and adversarial attacks demonstrate that RobustResNets consistently outperform both the standard WRNs and other existing robust architectures, achieving state-of-the-art AutoAttack robust accuracy of 61.1% without additional data and 63.7% with 500K external data while being $2\times$ more compact in terms of parameters. Code is available at \url{ https://github.com/zhichao-lu/robust-residual-network}


A Survey on Evaluation Metrics for Synthetic Material Micro-Structure Images from Generative Models

arXiv.org Artificial Intelligence

The evaluation of synthetic micro-structure images is an emerging problem as machine learning and materials science research have evolved together. Typical state of the art methods in evaluating synthetic images from generative models have relied on the Fr\'echet Inception Distance. However, this and other similar methods, are limited in the materials domain due to both the unique features that characterize physically accurate micro-structures and limited dataset sizes. In this study we evaluate a variety of methods on scanning electron microscope (SEM) images of graphene-reinforced polyurethane foams. The primary objective of this paper is to report our findings with regards to the shortcomings of existing methods so as to encourage the machine learning community to consider enhancements in metrics for assessing quality of synthetic images in the material science domain.


Interpretable-AI Policies using Evolutionary Nonlinear Decision Trees for Discrete Action Systems

arXiv.org Machine Learning

Black-box artificial intelligence (AI) induction methods such as deep reinforcement learning (DRL) are increasingly being used to find optimal policies for a given control task. Although policies represented using a black-box AI are capable of efficiently executing the underlying control task and achieving optimal closed-loop performance -- controlling the agent from initial time step until the successful termination of an episode, the developed control rules are often complex and neither interpretable nor explainable. In this paper, we use a recently proposed nonlinear decision-tree (NLDT) approach to find a hierarchical set of control rules in an attempt to maximize the open-loop performance for approximating and explaining the pre-trained black-box DRL (oracle) agent using the labelled state-action dataset. Recent advances in nonlinear optimization approaches using evolutionary computation facilitates finding a hierarchical set of nonlinear control rules as a function of state variables using a computationally fast bilevel optimization procedure at each node of the proposed NLDT. Additionally, we propose a re-optimization procedure for enhancing closed-loop performance of an already derived NLDT. We evaluate our proposed methodologies on four different control problems having two to four discrete actions. In all these problems our proposed approach is able to find simple and interpretable rules involving one to four non-linear terms per rule, while simultaneously achieving on par closed-loop performance when compared to a trained black-box DRL agent. The obtained results are inspiring as they suggest the replacement of complicated black-box DRL policies involving thousands of parameters (making them non-interpretable) with simple interpretable policies. Results are encouraging and motivating to pursue further applications of proposed approach in solving more complex control tasks.


Interpretable Rule Discovery Through Bilevel Optimization of Split-Rules of Nonlinear Decision Trees for Classification Problems

arXiv.org Machine Learning

For supervised classification problems involving design, control, other practical purposes, users are not only interested in finding a highly accurate classifier, but they also demand that the obtained classifier be easily interpretable. While the definition of interpretability of a classifier can vary from case to case, here, by a humanly interpretable classifier we restrict it to be expressed in simplistic mathematical terms. As a novel approach, we represent a classifier as an assembly of simple mathematical rules using a non-linear decision tree (NLDT). Each conditional (non-terminal) node of the tree represents a non-linear mathematical rule (split-rule) involving features in order to partition the dataset in the given conditional node into two non-overlapping subsets. This partitioning is intended to minimize the impurity of the resulting child nodes. By restricting the structure of split-rule at each conditional node and depth of the decision tree, the interpretability of the classifier is assured. The non-linear split-rule at a given conditional node is obtained using an evolutionary bilevel optimization algorithm, in which while the upper-level focuses on arriving at an interpretable structure of the split-rule, the lower-level achieves the most appropriate weights (coefficients) of individual constituents of the rule to minimize the net impurity of two resulting child nodes. The performance of the proposed algorithm is demonstrated on a number of controlled test problems, existing benchmark problems, and industrial problems. Results on two to 500-feature problems are encouraging and open up further scopes of applying the proposed approach to more challenging and complex classification tasks.


Many-Objective Software Remodularization using NSGA-III

arXiv.org Artificial Intelligence

Software systems nowadays are complex and difficult to maintain due to continuous changes and bad design choices. To handle the complexity of systems, software products are, in general, decomposed in terms of packages/modules containing classes that are dependent. However, it is challenging to automatically remodularize systems to improve their maintainability. The majority of existing remodularization work mainly satisfy one objective which is improving the structure of packages by optimizing coupling and cohesion. In addition, most of existing studies are limited to only few operation types such as move class and split packages. Many other objectives, such as the design semantics, reducing the number of changes and maximizing the consistency with development change history, are important to improve the quality of the software by remodularizing it. In this paper, we propose a novel many-objective search-based approach using NSGA-III. The process aims at finding the optimal remodularization solutions that improve the structure of packages, minimize the number of changes, preserve semantics coherence, and re-use the history of changes. We evaluate the efficiency of our approach using four different open-source systems and one automotive industry project, provided by our industrial partner, through a quantitative and qualitative study conducted with software engineers.


Difficulty Adjustable and Scalable Constrained Multi-objective Test Problem Toolkit

arXiv.org Artificial Intelligence

Multi-objective evolutionary algorithms (MOEAs) have progressed significantly in recent decades, but most of them are designed to solve unconstrained multi-objective optimization problems. In fact, many real-world multi-objective problems contain a number of constraints. To promote research on constrained multi-objective optimization, we first propose a problem classification scheme with three primary types of difficulty, which reflect various types of challenges presented by real-world optimization problems, in order to characterize the constraint functions in constrained multi-objective optimization problems (CMOPs). These are feasibility-hardness, convergence-hardness and diversity-hardness. We then develop a general toolkit to construct difficulty-adjustable and scalable CMOPs (DAS-CMOPs, or DAS-CMaOPs when the number of objectives is greater than three) with three types of parameterized constraint functions developed to capture the three proposed types of difficulty. Based on this toolkit, we suggest nine difficulty-adjustable and scalable CMOPs and nine CMaOPs. The experimental results reveal that mechanisms in MOEA/D-CDP may be more effective in solving convergence-hard DAS-CMOPs, while mechanisms of NSGA-II-CDP may be more effective in solving DAS-CMOPs with simultaneous diversity-, feasibility- and convergence-hardness. Mechanisms in C-NSGA-III may be more effective in solving feasibility-hard CMaOPs, while mechanisms of C-MOEA/DD may be more effective in solving CMaOPs with convergence-hardness. In addition, none of them can solve these problems efficiently, which stimulates us to continue to develop new CMOEAs and CMaOEAs to solve the suggested DAS-CMOPs and DAS-CMaOPs.