Goto

Collaborating Authors

 DeCharms, R. Christopher


Characterizing Neurons in the Primary Auditory Cortex of the Awake Primate Using Reverse Correlation

Neural Information Processing Systems

While the understanding of the functional role of different classes of neurons in the awake primary visual cortex has been extensively studied since the time of Hubel and Wiesel (Hubel and Wiesel, 1962), our understanding of the feature selectivity and functional role of neurons in the primary auditory cortex is much farther from complete. Moving bars have long been recognized as an optimal stimulus for many visual cortical neurons, and this finding has recently been confirmed and extended in detail using reverse correlation methods (Jones and Palmer, 1987; Reid and Alonso, 1995; Reid et al., 1991; llingach et al., 1997). In this study, we recorded from neurons in the primary auditory cortex of the awake primate, and used a novel reverse correlation technique to compute receptive fields (or preferred stimuli), encompassing both multiple frequency components and ongoing time. These spectrotemporal receptive fields make clear that neurons in the primary auditory cortex, as in the primary visual cortex, typically show considerable structure in their feature processing properties, often including multiple excitatory and inhibitory regions in their receptive fields. These neurons can be sensitive to stimulus edges in frequency composition or in time, and sensitive to stimulus transitions such as changes in frequency. These neurons also show strong responses and selectivity to continuous frequency modulated stimuli analogous to visual drifting gratings.


Characterizing Neurons in the Primary Auditory Cortex of the Awake Primate Using Reverse Correlation

Neural Information Processing Systems

While the understanding of the functional role of different classes of neurons in the awake primary visual cortex has been extensively studied since the time of Hubel and Wiesel (Hubel and Wiesel, 1962), our understanding of the feature selectivity and functional role of neurons in the primary auditory cortex is much farther from complete. Moving bars have long been recognized as an optimal stimulus for many visual cortical neurons, and this finding has recently been confirmed and extended in detail using reverse correlation methods (Jones and Palmer, 1987; Reid and Alonso, 1995; Reid et al., 1991; llingach et al., 1997). In this study, we recorded from neurons in the primary auditory cortex of the awake primate, and used a novel reverse correlation technique to compute receptive fields (or preferred stimuli), encompassing both multiple frequency components and ongoing time. These spectrotemporal receptive fields make clear that neurons in the primary auditory cortex, as in the primary visual cortex, typically show considerable structure in their feature processing properties, often including multiple excitatory and inhibitory regions in their receptive fields. These neurons can be sensitive to stimulus edges in frequency composition or in time, and sensitive to stimulus transitions such as changes in frequency. These neurons also show strong responses and selectivity to continuous frequency modulated stimuli analogous to visual drifting gratings.


Characterizing Neurons in the Primary Auditory Cortex of the Awake Primate Using Reverse Correlation

Neural Information Processing Systems

While the understanding of the functional role of different classes of neurons in the awake primary visual cortex has been extensively studied since the time of Hubel and Wiesel (Hubel and Wiesel, 1962), our understanding of the feature selectivity and functional role of neurons in the primary auditory cortex is much farther from complete. Movingbars have long been recognized as an optimal stimulus for many visual cortical neurons, and this finding has recently been confirmed and extended in detail using reverse correlation methods (Jones and Palmer, 1987; Reid and Alonso, 1995; Reid et al., 1991; llingach et al., 1997). In this study, we recorded from neurons in the primary auditory cortex of the awake primate, and used a novel reverse correlationtechnique to compute receptive fields (or preferred stimuli), encompassing both multiple frequency components and ongoing time.These spectrotemporal receptive fields make clear that neurons in the primary auditory cortex, as in the primary visual cortex, typicallyshow considerable structure in their feature processing properties, often including multiple excitatory and inhibitory regions in their receptive fields. These neurons can be sensitive to stimulus edges in frequency composition or in time, and sensitive to stimulus transitions such as changes in frequency. These neurons also show strong responses and selectivity to continuous frequency modulated stimuli analogous to visual drifting gratings.


Using Helmholtz Machines to Analyze Multi-channel Neuronal Recordings

Neural Information Processing Systems

One of the current challenges to understanding neural information processing in biological systems is to decipher the "code" carried by large populations of neurons acting in parallel. We present an algorithm for automated discovery of stochastic firing patterns in large ensembles of neurons. The algorithm, from the "Helmholtz Machine" family, attempts to predict the observed spike patterns in the data. The model consists of an observable layer which is directly activated by the input spike patterns, and hidden units that are activated throughascending connections from the input layer. The hidden unit activity can be propagated down to the observable layer to create a prediction of the data pattern that produced it.


Using Helmholtz Machines to Analyze Multi-channel Neuronal Recordings

Neural Information Processing Systems

One of the current challenges to understanding neural information processing in biological systems is to decipher the "code" carried by large populations of neurons acting in parallel. We present an algorithm for automated discovery of stochastic firing patterns in large ensembles of neurons. The algorithm, from the "Helmholtz Machine" family, attempts to predict the observed spike patterns in the data. The model consists of an observable layer which is directly activated by the input spike patterns, and hidden units that are activated through ascending connections from the input layer. The hidden unit activity can be propagated down to the observable layer to create a prediction of the data pattern that produced it.