Goto

Collaborating Authors

 De Cao, Nicola


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


Querying Large Language Models with SQL

arXiv.org Artificial Intelligence

In many use-cases, information is stored in text but not available in structured data. However, extracting data from natural language text to precisely fit a schema, and thus enable querying, is a challenging task. With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents. Thus, we envision the use of SQL queries to cover a broad range of data that is not captured by traditional databases by tapping the information in LLMs. To ground this vision, we present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM. The main idea is to execute some operators of the the query plan with prompts that retrieve data from the LLM. For a large class of SQL queries, querying LLMs returns well structured relations, with encouraging qualitative results. Preliminary experimental results make pre-trained LLMs a promising addition to the field of database systems, introducing a new direction for hybrid query processing. However, we pinpoint several research challenges that must be addressed to build a DBMS that exploits LLMs. While some of these challenges necessitate integrating concepts from the NLP literature, others offer novel research avenues for the DB community.


GenIE: Generative Information Extraction

arXiv.org Machine Learning

Structured and grounded representation of text is typically formalized by closed information extraction, the problem of extracting an exhaustive set of (subject, relation, object) triplets that are consistent with a predefined set of entities and relations from a knowledge base schema. Most existing works are pipelines prone to error accumulation, and all approaches are only applicable to unrealistically small numbers of entities and relations. We introduce GenIE (generative information extraction), the first end-to-end autoregressive formulation of closed information extraction. GenIE naturally exploits the language knowledge from the pre-trained transformer by autoregressively generating relations and entities in textual form. Thanks to a new bi-level constrained generation strategy, only triplets consistent with the predefined knowledge base schema are produced. Our experiments show that GenIE is state-of-the-art on closed information extraction, generalizes from fewer training data points than baselines, and scales to a previously unmanageable number of entities and relations. With this work, closed information extraction becomes practical in realistic scenarios, providing new opportunities for downstream tasks. Finally, this work paves the way towards a unified end-to-end approach to the core tasks of information extraction. Code and models available at https://github.com/epfl-dlab/GenIE.


Highly Parallel Autoregressive Entity Linking with Discriminative Correction

arXiv.org Machine Learning

Generative approaches have been recently shown to be effective for both Entity Disambiguation and Entity Linking (i.e., joint mention detection and disambiguation). However, the previously proposed autoregressive formulation for EL suffers from i) high computational cost due to a complex (deep) decoder, ii) non-parallelizable decoding that scales with the source sequence length, and iii) the need for training on a large amount of data. In this work, we propose a very efficient approach that parallelizes autoregressive linking across all potential mentions and relies on a shallow and efficient decoder. Moreover, we augment the generative objective with an extra discriminative component, i.e., a correction term which lets us directly optimize the generator's ranking. When taken together, these techniques tackle all the above issues: our model is >70 times faster and more accurate than the previous generative method, outperforming state-of-the-art approaches on the standard English dataset AIDA-CoNLL. Source code available at https://github.com/nicola-decao/efficient-autoregressive-EL


Editing Factual Knowledge in Language Models

arXiv.org Artificial Intelligence

The factual knowledge acquired during pretraining and stored in the parameters of Language Models (LM) can be useful in downstream tasks (e.g., question answering or textual inference). However, some facts can be incorrectly induced or become obsolete over time. We present KnowledgeEditor, a method that can be used to edit this knowledge and, thus, fix 'bugs' or unexpected predictions without the need for expensive re-training or fine-tuning. Besides being computationally efficient, KnowledgeEditor does not require any modifications in LM pre-training (e.g., the use of meta-learning). In our approach, we train a hyper-network with constrained optimization to modify a fact without affecting the rest of the knowledge; the trained hyper-network is then used to predict the weight update at test time. We show KnowledgeEditor's efficacy with two popular architectures and knowledge-intensive tasks: i) a BERT model fine-tuned for fact-checking, and ii) a sequence-to-sequence BART model for question answering. With our method, changing a prediction on the specific wording of a query tends to result in a consistent change in predictions also for its paraphrases. We show that this can be further encouraged by exploiting (e.g., automatically-generated) paraphrases during training. Interestingly, our hyper-network can be regarded as a 'probe' revealing which components of a model need to be changed to manipulate factual knowledge; our analysis shows that the updates tend to be concentrated on a small subset of components. Code at https://github.com/nicola-decao/KnowledgeEditor


Multilingual Autoregressive Entity Linking

arXiv.org Artificial Intelligence

We present mGENRE, a sequence-to-sequence system for the Multilingual Entity Linking (MEL) problem -- the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where mGENRE establishes new state-of-the-art results. Code and pre-trained models at https://github.com/facebookresearch/GENRE.


NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned

arXiv.org Artificial Intelligence

We review the EfficientQA competition from NeurIPS 2020. The competition focused on open-domain question answering (QA), where systems take natural language questions as input and return natural language answers. The aim of the competition was to build systems that can predict correct answers while also satisfying strict on-disk memory budgets. These memory budgets were designed to encourage contestants to explore the trade-off between storing large, redundant, retrieval corpora or the parameters of large learned models. In this report, we describe the motivation and organization of the competition, review the best submissions, and analyze system predictions to inform a discussion of evaluation for open-domain QA.


How do Decisions Emerge across Layers in Neural Models? Interpretation with Differentiable Masking

arXiv.org Machine Learning

Attribution methods assess the contribution of inputs to the model prediction. One way to do so is erasure: a subset of inputs is considered irrelevant if it can be removed without affecting the prediction. Though conceptually simple, erasure's objective is intractable and approximate search remains expensive with modern deep NLP models. Erasure is also susceptible to the hindsight bias: the fact that an input can be dropped does not mean that the model `knows' it can be dropped. The resulting pruning is over-aggressive and does not reflect how the model arrives at the prediction. To deal with these challenges, we introduce Differentiable Masking. DiffMask learns to mask-out subsets of the input while maintaining differentiability. The decision to include or disregard an input token is made with a simple model based on intermediate hidden layers of the analyzed model. First, this makes the approach efficient because we predict rather than search. Second, as with probing classifiers, this reveals what the network `knows' at the corresponding layers. This lets us not only plot attribution heatmaps but also analyze how decisions are formed across network layers. We use DiffMask to study BERT models on sentiment classification and question answering.


Autoregressive Entity Retrieval

arXiv.org Machine Learning

Entities are at the center of how we represent and aggregate knowledge. For instance, Encyclopedias such as Wikipedia are structured by entities (e.g., one per article). The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering. One way to understand current approaches is as classifiers among atomic labels, one for each entity. Their weight vectors are dense entity representations produced by encoding entity information such as descriptions. This approach leads to several shortcomings: i) context and entity affinity is mainly captured through a vector dot product, potentially missing fine-grained interactions between the two; ii) a large memory footprint is needed to store dense representations when considering large entity sets; iii) an appropriately hard set of negative data has to be subsampled at training time. We propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion, and conditioned on the context. This enables to mitigate the aforementioned technical issues: i) the autoregressive formulation allows us to directly capture relations between context and entity name, effectively cross encoding both; ii) the memory footprint is greatly reduced because the parameters of our encoder-decoder architecture scale with vocabulary size, not entity count; iii) the exact softmax loss can be efficiently computed without the need to subsample negative data. We show the efficacy of the approach with more than 20 datasets on entity disambiguation, end-to-end entity linking and document retrieval tasks, achieving new SOTA, or very competitive results while using a tiny fraction of the memory of competing systems. Finally, we demonstrate that new entities can be added by simply specifying their unambiguous name.