Dayan, Peter
Improving Policies without Measuring Merits
Dayan, Peter, Singh, Satinder P.
Performing policy iteration in dynamic programming should only require knowledge of relative rather than absolute measures of the utility of actions (Werbos, 1991) - what Baird (1993) calls the advantages ofactions at states. Nevertheless, most existing methods in dynamic programming (including Baird's) compute some form of absolute utility function. For smooth problems, advantages satisfy two differential consistency conditions (including the requirement that they be free of curl), and we show that enforcing these can lead to appropriate policy improvement solely in terms of advantages. 1 Introd uction In deciding how to change a policy at a state, an agent only needs to know the differences (called advantages) between the total return based on taking each action a for one step and then following the policy forever after, and the total return based on always following the policy (the conventional value of the state under the policy). The advantages are like differentials - they do not depend on the local levels of the total return. Indeed, Werbos (1991) defined Dual Heuristic Programming (DHP), using these facts, learning the derivatives of these total returns with respect to the state.
Recognizing Handwritten Digits Using Mixtures of Linear Models
Hinton, Geoffrey E., Revow, Michael, Dayan, Peter
We construct a mixture of locally linear generative models of a collection ofpixel-based images of digits, and use them for recognition. Different models of a given digit are used to capture different styles of writing, and new images are classified by evaluating their log-likelihoods under each model. We use an EMbased algorithm in which the M-step is computationally straightforward principal components analysis (PCA). Incorporating tangent-plane information [12]about expected local deformations only requires adding tangent vectors into the sample covariance matrices for the PCA, and it demonstrably improves performance.
Recognizing Handwritten Digits Using Mixtures of Linear Models
Hinton, Geoffrey E., Revow, Michael, Dayan, Peter
We construct a mixture of locally linear generative models of a collection of pixel-based images of digits, and use them for recognition. Different models of a given digit are used to capture different styles of writing, and new images are classified by evaluating their log-likelihoods under each model. We use an EMbased algorithm in which the M-step is computationally straightforward principal components analysis (PCA). Incorporating tangent-plane information [12] about expected local deformations only requires adding tangent vectors into the sample covariance matrices for the PCA, and it demonstrably improves performance.
Temporal Difference Learning of Position Evaluation in the Game of Go
Schraudolph, Nicol N., Dayan, Peter, Sejnowski, Terrence J.
Computational Neurobiology Laboratory The Salk Institute for Biological Studies San Diego, CA 92186-5800 Abstract The game of Go has a high branching factor that defeats the tree search approach used in computer chess, and long-range spatiotemporal interactionsthat make position evaluation extremely difficult. Development of conventional Go programs is hampered by their knowledge-intensive nature. We demonstrate a viable alternative by training networks to evaluate Go positions via temporal difference(TD) learning. Our approach is based on network architectures that reflect the spatial organization of both input and reinforcement signals on the Go board, and training protocols that provide exposure to competent (though unlabelled) play. These techniques yield far better performance than undifferentiated networks trained by selfplay alone.A network with less than 500 weights learned within 3,000 games of 9x9 Go a position evaluation function that enables a primitive one-ply search to defeat a commercial Go program at a low playing level. 1 INTRODUCTION Go was developed three to four millenia ago in China; it is the oldest and one of the most popular board games in the world.
Foraging in an Uncertain Environment Using Predictive Hebbian Learning
Montague, P. Read, Dayan, Peter, Sejnowski, Terrence J.
Survival is enhanced by an ability to predict the availability of food, the likelihood of predators, and the presence of mates. We present a concrete model that uses diffuse neurotransmitter systems to implement a predictive version of a Hebb learning rule embedded in a neural architecture based on anatomical and physiological studies on bees. The model captured the strategies seen in the behavior of bees and a number of other animals when foraging in an uncertain environment. The predictive model suggests a unified way in which neuromodulatory influences can be used to bias actions and control synaptic plasticity. Successful predictions enhance adaptive behavior by allowing organisms to prepare for future actions, rewards, or punishments. Moreover, it is possible to improve upon behavioral choices if the consequences of executing different actions can be reliably predicted. Although classical and instrumental conditioning results from the psychological literature [1] demonstrate that the vertebrate brain is capable of reliable prediction, how these predictions are computed in brains is not yet known. The brains of vertebrates and invertebrates possess small nuclei which project axons throughout large expanses of target tissue and deliver various neurotransmitters such as dopamine, norepinephrine, and acetylcholine [4]. The activity in these systems may report on reinforcing stimuli in the world or may reflect an expectation of future reward [5, 6,7,8].
Foraging in an Uncertain Environment Using Predictive Hebbian Learning
Montague, P. Read, Dayan, Peter, Sejnowski, Terrence J.
Survival is enhanced by an ability to predict the availability of food, the likelihood of predators, and the presence of mates. We present a concrete model that uses diffuse neurotransmitter systems to implement a predictive version of a Hebb learning rule embedded in a neural architecture based on anatomical and physiological studies on bees. The model captured the strategies seen in the behavior of bees and a number of other animals when foraging in an uncertain environment. The predictive model suggests a unified way in which neuromodulatory influences can be used to bias actions and control synaptic plasticity. Successful predictions enhance adaptive behavior by allowing organisms to prepare for future actions, rewards, or punishments. Moreover, it is possible to improve upon behavioral choices if the consequences of executing different actions can be reliably predicted. Although classical and instrumental conditioning results from the psychological literature [1] demonstrate that the vertebrate brain is capable of reliable prediction, how these predictions are computed in brains is not yet known. The brains of vertebrates and invertebrates possess small nuclei which project axons throughout large expanses of target tissue and deliver various neurotransmitters such as dopamine, norepinephrine, and acetylcholine [4]. The activity in these systems may report on reinforcing stimuli in the world or may reflect an expectation of future reward [5, 6,7,8].
Foraging in an Uncertain Environment Using Predictive Hebbian Learning
Montague, P. Read, Dayan, Peter, Sejnowski, Terrence J.
Survival is enhanced by an ability to predict the availability of food, the likelihood of predators, and the presence of mates. We present a concrete model that uses diffuse neurotransmitter systems to implement a predictive version of a Hebb learning rule embedded in a neural architecture basedon anatomical and physiological studies on bees. The model captured the strategies seen in the behavior of bees and a number of other animals when foraging in an uncertain environment. The predictive model suggests a unified way in which neuromodulatory influences can be used to bias actions and control synaptic plasticity. Successful predictions enhance adaptive behavior by allowing organisms to prepare for future actions,rewards, or punishments. Moreover, it is possible to improve upon behavioral choices if the consequences of executing different actions can be reliably predicted. Although classicaland instrumental conditioning results from the psychological literature [1] demonstrate that the vertebrate brain is capable of reliable prediction, how these predictions are computed in brains is not yet known. The brains of vertebrates and invertebrates possess small nuclei which project axons throughout large expanses of target tissue and deliver various neurotransmitters such as dopamine, norepinephrine, and acetylcholine [4]. The activity in these systems may report on reinforcing stimuli in the world or may reflect an expectation of future reward [5, 6,7,8].
Feudal Reinforcement Learning
Dayan, Peter, Hinton, Geoffrey E.
One way to speed up reinforcement learning is to enable learning to happen simultaneously at multiple resolutions in space and time. This paper shows how to create a Q-Iearning managerial hierarchy in which high level managers learn how to set tasks to their submanagers who, in turn, learn how to satisfy them. Sub-managers need not initially understand their managers' commands. They simply learn to maximise their reinforcement in the context of the current command. We illustrate the system using a simple maze task.. As the system learns how to get around, satisfying commands at the multiple levels, it explores more efficiently than standard, flat, Q-Iearning and builds a more comprehensive map. 1 INTRODUCTION Straightforward reinforcement learning has been quite successful at some relatively complex tasks like playing backgammon (Tesauro, 1992).