Temporal Difference Learning of Position Evaluation in the Game of Go

Schraudolph, Nicol N., Dayan, Peter, Sejnowski, Terrence J.

Neural Information Processing Systems 

Computational Neurobiology Laboratory The Salk Institute for Biological Studies San Diego, CA 92186-5800 Abstract The game of Go has a high branching factor that defeats the tree search approach used in computer chess, and long-range spatiotemporal interactionsthat make position evaluation extremely difficult. Development of conventional Go programs is hampered by their knowledge-intensive nature. We demonstrate a viable alternative by training networks to evaluate Go positions via temporal difference(TD) learning. Our approach is based on network architectures that reflect the spatial organization of both input and reinforcement signals on the Go board, and training protocols that provide exposure to competent (though unlabelled) play. These techniques yield far better performance than undifferentiated networks trained by selfplay alone.A network with less than 500 weights learned within 3,000 games of 9x9 Go a position evaluation function that enables a primitive one-ply search to defeat a commercial Go program at a low playing level. 1 INTRODUCTION Go was developed three to four millenia ago in China; it is the oldest and one of the most popular board games in the world.

Similar Docs  Excel Report  more

TitleSimilaritySource
None found