Goto

Collaborating Authors

 Davis, Larry S.


FlexNeRF: Photorealistic Free-viewpoint Rendering of Moving Humans from Sparse Views

arXiv.org Artificial Intelligence

We present FlexNeRF, a method for photorealistic freeviewpoint rendering of humans in motion from monocular videos. Our approach works well with sparse views, which is a challenging scenario when the subject is exhibiting fast/complex motions. We propose a novel approach which jointly optimizes a canonical time and pose configuration, with a pose-dependent motion field and pose-independent temporal deformations complementing each other. Thanks to our novel temporal and cyclic consistency constraints along with additional losses on intermediate representation such as segmentation, our approach provides high quality outputs as the observed views become sparser. We empirically demonstrate that our method significantly outperforms the state-of-the-art on public benchmark datasets as well as a self-captured fashion dataset. The project page is available at: https://flex-nerf.github.io/


InvGAN: Invertible GANs

arXiv.org Machine Learning

Generation of photo-realistic images, semantic editing and representation learning are a few of many potential applications of high resolution generative models. Recent progress in GANs have established them as an excellent choice for such tasks. However, since they do not provide an inference model, image editing or downstream tasks such as classification can not be done on real images using the GAN latent space. Despite numerous efforts to train an inference model or design an iterative method to invert a pre-trained generator, previous methods are dataset (e.g. human face images) and architecture (e.g. StyleGAN) specific. These methods are nontrivial to extend to novel datasets or architectures. We propose a general framework that is agnostic to architecture and datasets. Our key insight is that, by training the inference and the generative model together, we allow them to adapt to each other and to converge to a better quality model. Our \textbf{InvGAN}, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model. This allows us to perform image inpainting, merging, interpolation and online data augmentation. We demonstrate this with extensive qualitative and quantitative experiments.


Scale Normalized Image Pyramids with AutoFocus for Object Detection

arXiv.org Artificial Intelligence

We present an efficient foveal framework to perform object detection. A scale normalized image pyramid (SNIP) is generated that, like human vision, only attends to objects within a fixed size range at different scales. Such a restriction of objects' size during training affords better learning of object-sensitive filters, and therefore, results in better accuracy. However, the use of an image pyramid increases the computational cost. Hence, we propose an efficient spatial sub-sampling scheme which only operates on fixed-size sub-regions likely to contain objects (as object locations are known during training). The resulting approach, referred to as Scale Normalized Image Pyramid with Efficient Resampling or SNIPER, yields up to 3 times speed-up during training. Unfortunately, as object locations are unknown during inference, the entire image pyramid still needs processing. To this end, we adopt a coarse-to-fine approach, and predict the locations and extent of object-like regions which will be processed in successive scales of the image pyramid. Intuitively, it's akin to our active human-vision that first skims over the field-of-view to spot interesting regions for further processing and only recognizes objects at the right resolution. The resulting algorithm is referred to as AutoFocus and results in a 2.5-5 times speed-up during inference when used with SNIP.


Truncated Cauchy Non-negative Matrix Factorization

arXiv.org Machine Learning

Non-negative matrix factorization (NMF) minimizes the Euclidean distance between the data matrix and its low rank approximation, and it fails when applied to corrupted data because the loss function is sensitive to outliers. In this paper, we propose a Truncated CauchyNMF loss that handle outliers by truncating large errors, and develop a Truncated CauchyNMF to robustly learn the subspace on noisy datasets contaminated by outliers. We theoretically analyze the robustness of Truncated CauchyNMF comparing with the competing models and theoretically prove that Truncated CauchyNMF has a generalization bound which converges at a rate of order $O(\sqrt{{\ln n}/{n}})$, where $n$ is the sample size. We evaluate Truncated CauchyNMF by image clustering on both simulated and real datasets. The experimental results on the datasets containing gross corruptions validate the effectiveness and robustness of Truncated CauchyNMF for learning robust subspaces.


Adversarial Training for Free!

arXiv.org Machine Learning

Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters. Our "free" adversarial training algorithm achieves state-of-the-art robustness on CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks.


SNIPER: Efficient Multi-Scale Training

Neural Information Processing Systems

Instead of processing every pixel in an image pyramid, SNIPER processes context regions around ground-truth instances (referred to as chips) at the appropriate scale. For background sampling, these context-regions are generated using proposals extracted from a region proposal network trained with a short learning schedule. Hence, the number of chips generated per image during training adaptively changes based on the scene complexity. SNIPER only processes 30% more pixels compared to the commonly used single scale training at 800x1333 pixels on the COCO dataset. But, it also observes samples from extreme resolutions of the image pyramid, like 1400x2000 pixels. As SNIPER operates on resampled low resolution chips (512x512 pixels), it can have a batch size as large as 20 on a single GPU even with a ResNet-101 backbone. Therefore it can benefit from batch-normalization during training without the need for synchronizing batch-normalization statistics across GPUs. SNIPER brings training of instance level recognition tasks like object detection closer to the protocol for image classification and suggests that the commonly accepted guideline that it is important to train on high resolution images for instance level visual recognition tasks might not be correct. Our implementation based on Faster-RCNN with a ResNet-101 backbone obtains an mAP of 47.6% on the COCO dataset for bounding box detection and can process 5 images per second during inference with a single GPU.


SNIPER: Efficient Multi-Scale Training

Neural Information Processing Systems

We present SNIPER, an algorithm for performing efficient multi-scale training in instance level visual recognition tasks. Instead of processing every pixel in an image pyramid, SNIPER processes context regions around ground-truth instances (referred to as chips) at the appropriate scale. For background sampling, these context-regions are generated using proposals extracted from a region proposal network trained with a short learning schedule. Hence, the number of chips generated per image during training adaptively changes based on the scene complexity. SNIPER only processes 30% more pixels compared to the commonly used single scale training at 800x1333 pixels on the COCO dataset. But, it also observes samples from extreme resolutions of the image pyramid, like 1400x2000 pixels. As SNIPER operates on resampled low resolution chips (512x512 pixels), it can have a batch size as large as 20 on a single GPU even with a ResNet-101 backbone. Therefore it can benefit from batch-normalization during training without the need for synchronizing batch-normalization statistics across GPUs. SNIPER brings training of instance level recognition tasks like object detection closer to the protocol for image classification and suggests that the commonly accepted guideline that it is important to train on high resolution images for instance level visual recognition tasks might not be correct. Our implementation based on Faster-RCNN with a ResNet-101 backbone obtains an mAP of 47.6% on the COCO dataset for bounding box detection and can process 5 images per second during inference with a single GPU. Code is available at https://github.com/MahyarNajibi/SNIPER/ .


Deception Detection in Videos

AAAI Conferences

We present a system for covert automated deception detection using information available in a video. We study the importance of different modalities like vision, audio and text for this task. On the vision side, our system uses classifiers trained on low level video features which predict human micro-expressions. We show that predictions of high-level micro-expressions can be used as features for deception prediction. Surprisingly, IDT (Improved Dense Trajectory) features which have been widely used for action recognition, are also very good at predicting deception in videos. We fuse the score of classifiers trained on IDT features and high-level micro-expressions to improve performance. MFCC (Mel-frequency Cepstral Coefficients) features from the audio domain also provide a significant boost in performance, while information from transcripts is not very beneficial for our system. Using various classifiers, our automated system obtains an AUC of 0.877 (10-fold cross-validation) when evaluated on subjects which were not part of the training set. Even though state-of-the-art methods use human annotations of micro-expressions for deception detection, our fully automated approach outperforms them by 5%. When combined with human annotations of micro-expressions, our AUC improves to 0.922. We also present results of a user-study to analyze how well do average humans perform on this task, what modalities they use for deception detection and how they perform if only one modality is accessible.


Knowledge Transfer with Interactive Learning of Semantic Relationships

AAAI Conferences

We propose a novel learning framework for object categorization with interactive semantic feedback. In this framework, a discriminative categorization model improves through human-guided iterative semantic feedbacks. Specifically, the model identifies the most helpful relational semantic queries to discriminatively refine the model. The user feedback on whether the relationship is semantically valid or not is incorporated back into the model, in the form of regularization, and the process iterates. We validate the proposed model in a few-shot multi-class classification scenario, where we measure classification performance on a set of ‘target’ classes, with few training instances, by leveraging and transferring knowledge from ‘anchor’ classes, that contain larger set of labeled instances.


Searching for Objects using Structure in Indoor Scenes

arXiv.org Artificial Intelligence

To identify the location of objects of a particular class, a passive computer vision system generally processes all the regions in an image to finally output few regions. However, we can use structure in the scene to search for objects without processing the entire image. We propose a search technique that sequentially processes image regions such that the regions that are more likely to correspond to the query class object are explored earlier. We frame the problem as a Markov decision process and use an imitation learning algorithm to learn a search strategy. Since structure in the scene is essential for search, we work with indoor scene images as they contain both unary scene context information and object-object context in the scene. We perform experiments on the NYU-depth v2 dataset and show that the unary scene context features alone can achieve a significantly high average precision while processing only 20-25\% of the regions for classes like bed and sofa. By considering object-object context along with the scene context features, the performance is further improved for classes like counter, lamp, pillow and sofa.