Davis, Ernest


How to Write Science Questions that Are Easy for People and Hard for Computers

AI Magazine

As a challenge problem for AI systems, I propose the use of hand-constructed multiple-choice tests, with problems that are easy for people but hard for computers. For the fourth grade level questions, I argue that questions that require the understanding of time, impossible or pointless scenarios, of causality, of the human body, or of sets of objects, and questions that require combining facts or require simple inductive arguments of indeterminate length can be chosen to be easy for people, and are likely to be hard for AI programs, in the current state of the art. For the high-school level, I argue that questions that relate the formal science to the realia of laboratory experiments or of real-world observations are likely to be easy for people and hard for AI programs.


Planning, Executing, and Evaluating the Winograd Schema Challenge

AI Magazine

The Winograd Schema Challenge was proposed by Hector Levesque in 2011 as an alternative to the Turing Test. Chief among its features is a simple question format that can span many commonsense knowledge domains. Questions are chosen so that they do not require specialized knoweldge or training, and are easy for humans to answer. This article details our plans to run the WSC and evaluate results.


Reports of the AAAI 2011 Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2011 Spring Symposium Series Monday through Wednesday, March 21–23, 2011 at Stanford University. The titles of the eight symposia were AI and Health Communication, Artificial Intelligence and Sustainable Design, AI for Business Agility, Computational Physiology, Help Me Help You: Bridging the Gaps in Human-Agent Collaboration, Logical Formalizations of Commonsense Reasoning, Multirobot Systems and Physical Data Structures, and Modeling Complex Adaptive Systems As If They Were Voting Processes.


Representations of Commonsense Knowledge

Classics

A full book, available for free in PDF form.From the preface:A major problem in artificial intelligence is to endow computers with commonsense knowledge of the world and with the ability to use that knowledge sensibly. A large body of research has studied this problem through careful analysis of typical examples of reasoning in a variety of commonsense domains. The immediate aim of this research is to develop a rich language for expressing commonsense knowledge, and inference techniques for carrying out commonsense reasoning. This book provides an introduction and a survey of this body of research. It is, to the best of my knowledge, the first book to attempt this.The book is designed to be used as a textbook for a one-semester graduate course on knowledge representation.Morgan Kaufmann


Representations of Commonsense Knowledge

Classics

A full book, available for free in PDF form.From the preface:A major problem in artificial intelligence is to endow computers with commonsense knowledge of the world and with the ability to use that knowledge sensibly. A large body of research has studied this problem through careful analysis of typical examples of reasoning in a variety of commonsense domains. The immediate aim of this research is to develop a rich language for expressing commonsense knowledge, and inference techniques for carrying out commonsense reasoning. This book provides an introduction and a survey of this body of research. It is, to the best of my knowledge, the first book to attempt this.The book is designed to be used as a textbook for a one-semester graduate course on knowledge representation.Morgan Kaufmann


Artificial Intelligence Research in Progress at the Courant Institute, New York University

AI Magazine

The AI lab at the Courant Institute at New York University (NYU) is pursuing many different areas of artificial intelligence (AI), including natural language processing, vision, common sense reasoning, information structuring, learning, and expert systems. Other groups in the Computer Science Department are studying such AI-related areas as text analysis, parallel Lisp and Prolog, robotics, low-level vision, and evidence theory.