Goto

Collaborating Authors

 Davies, Adam


Social Science Is Necessary for Operationalizing Socially Responsible Foundation Models

arXiv.org Artificial Intelligence

With the rise of foundation models, there is growing concern about their potential social impacts. Social science has a long history of studying the social impacts of transformative technologies in terms of pre-existing systems of power and how these systems are disrupted or reinforced by new technologies. In this position paper, we build on prior work studying the social impacts of earlier technologies to propose a conceptual framework studying foundation models as sociotechnical systems, incorporating social science expertise to better understand how these models affect systems of power, anticipate the impacts of deploying these models in various applications, and study the effectiveness of technical interventions intended to mitigate social harms. We advocate for an interdisciplinary and collaborative research paradigm between AI and social science across all stages of foundation model research and development to promote socially responsible research practices and use cases, and outline several strategies to facilitate such research.


Focus On This, Not That! Steering LLMs With Adaptive Feature Specification

arXiv.org Artificial Intelligence

Despite the success of Instruction Tuning (IT) in training large language models (LLMs) to perform arbitrary user-specified tasks, these models often still leverage spurious or biased features learned from their training data, leading to undesired behaviours when deploying them in new contexts. In this work, we introduce Focus Instruction Tuning (FIT), which trains LLMs to condition their responses by focusing on specific features whilst ignoring others, leading to different behaviours based on what features are specified. Across several experimental settings, we show that focus-tuned models can be adaptively steered by focusing on different features at inference-time: for instance, robustness can be improved by focusing on task-causal features and ignoring spurious features, and social bias can be mitigated by ignoring demographic categories. Furthermore, FIT can steer behaviour in new contexts, generalising under distribution shift and to new unseen features at inference time, and thereby facilitating more robust, fair, and controllable LLM applications in real-world environments.


Can LLMs Reliably Simulate Human Learner Actions? A Simulation Authoring Framework for Open-Ended Learning Environments

arXiv.org Artificial Intelligence

Simulating learner actions helps stress-test open-ended interactive learning environments and prototype new adaptations before deployment. While recent studies show the promise of using large language models (LLMs) for simulating human behavior, such approaches have not gone beyond rudimentary proof-of-concept stages due to key limitations. First, LLMs are highly sensitive to minor prompt variations, raising doubts about their ability to generalize to new scenarios without extensive prompt engineering. Moreover, apparently successful outcomes can often be unreliable, either because domain experts unintentionally guide LLMs to produce expected results, leading to self-fulfilling prophecies; or because the LLM has encountered highly similar scenarios in its training data, meaning that models may not be simulating behavior so much as regurgitating memorized content. To address these challenges, we propose Hyp-Mix, a simulation authoring framework that allows experts to develop and evaluate simulations by combining testable hypotheses about learner behavior. Testing this framework in a physics learning environment, we found that GPT-4 Turbo maintains calibrated behavior even as the underlying learner model changes, providing the first evidence that LLMs can be used to simulate realistic behaviors in open-ended interactive learning environments, a necessary prerequisite for useful LLM behavioral simulation.


Competence-Based Analysis of Language Models

arXiv.org Artificial Intelligence

Despite the recent success of large, pretrained neural language models (LLMs) on a variety of prompting tasks, these models can be alarmingly brittle to small changes in inputs or application contexts. To better understand such behavior and motivate the design of more robust LLMs, we provide a causal formulation of linguistic competence in the context of LLMs and propose a general framework to study and measure LLM competence. Our framework, CALM (Competence-based Analysis of Language Models), establishes the first quantitative measure of LLM competence, which we study by damaging models' internal representations of various linguistic properties in the course of performing various tasks using causal probing and evaluating models' alignment under these interventions with a given causal model. We also develop a novel approach for performing causal probing interventions using gradient-based adversarial attacks, which can target a broader range of properties and representations than existing techniques. We carry out a case study of CALM using these interventions to analyze BERT and RoBERTa's competence across a variety of lexical inference tasks, showing that the CALM framework and competence metric can be valuable tools for explaining and predicting their behavior across these tasks.