David Ha
Weight Agnostic Neural Networks
Adam Gaier, David Ha
Weight Agnostic Neural Networks
Adam Gaier, David Ha
Not all neural network architectures are created equal, some perform much better than others for certain tasks. But how important are the weight parameters of a neural network compared to its architecture? In this work, we question to what extent neural network architectures alone, without learning any weight parameters, can encode solutions for a given task. We propose a search method for neural network architectures that can already perform a task without any explicit weight training. To evaluate these networks, we populate the connections with a single shared weight parameter sampled from a uniform random distribution, and measure the expected performance. We demonstrate that our method can find minimal neural network architectures that can perform several reinforcement learning tasks without weight training. On a supervised learning domain, we find network architectures that achieve much higher than chance accuracy on MNIST using random weights.
Recurrent World Models Facilitate Policy Evolution
David Ha, Jürgen Schmidhuber
A generative recurrent neural network is quickly trained in an unsupervised manner to model popular reinforcement learning environments through compressed spatiotemporal representations. The world model's extracted features are fed into compact and simple policies trained by evolution, achieving state of the art results in various environments. We also train our agent entirely inside of an environment generated by its own internal world model, and transfer this policy back into the actual environment.