Goto

Collaborating Authors

 David, Davis


AFRIDOC-MT: Document-level MT Corpus for African Languages

arXiv.org Artificial Intelligence

This paper introduces AFRIDOC-MT, a document-level multi-parallel translation dataset covering English and five African languages: Amharic, Hausa, Swahili, Yor\`ub\'a, and Zulu. The dataset comprises 334 health and 271 information technology news documents, all human-translated from English to these languages. We conduct document-level translation benchmark experiments by evaluating neural machine translation (NMT) models and large language models (LLMs) for translations between English and these languages, at both the sentence and pseudo-document levels. These outputs are realigned to form complete documents for evaluation. Our results indicate that NLLB-200 achieved the best average performance among the standard NMT models, while GPT-4o outperformed general-purpose LLMs. Fine-tuning selected models led to substantial performance gains, but models trained on sentences struggled to generalize effectively to longer documents. Furthermore, our analysis reveals that some LLMs exhibit issues such as under-generation, repetition of words or phrases, and off-target translations, especially for African languages.


AfriSenti: A Twitter Sentiment Analysis Benchmark for African Languages

arXiv.org Artificial Intelligence

Africa is home to over 2,000 languages from more than six language families and has the highest linguistic diversity among all continents. These include 75 languages with at least one million speakers each. Yet, there is little NLP research conducted on African languages. Crucial to enabling such research is the availability of high-quality annotated datasets. In this paper, we introduce AfriSenti, a sentiment analysis benchmark that contains a total of >110,000 tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yor\`ub\'a) from four language families. The tweets were annotated by native speakers and used in the AfriSenti-SemEval shared task (The AfriSenti Shared Task had over 200 participants. See website at https://afrisenti-semeval.github.io). We describe the data collection methodology, annotation process, and the challenges we dealt with when curating each dataset. We further report baseline experiments conducted on the different datasets and discuss their usefulness.


MasakhaNEWS: News Topic Classification for African languages

arXiv.org Artificial Intelligence

African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS -- a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach.


BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

arXiv.org Artificial Intelligence

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.


The African Stopwords project: curating stopwords for African languages

arXiv.org Artificial Intelligence

Stopwords are fundamental in Natural Language Processing (NLP) techniques for information retrieval. One of the common tasks in preprocessing of text data is the removal of stopwords. Currently, while high-resource languages like English benefit from the availability of several stopwords, low-resource languages, such as those found in the African continent, have none that are standardized and available for use in NLP packages. Stopwords in the context of African languages are understudied and can reveal information about the crossover between languages. The African Stopwords project aims to study and curate stopwords for African languages. When analysing text data and building various NLP models, stopwords might not add much value to the meaning of the document (Singh, 2019) depending on the NLP task (like text classification).


MasakhaNER: Named Entity Recognition for African Languages

arXiv.org Artificial Intelligence

We take a step towards addressing the under-representation of the African continent in NLP research by creating the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages, bringing together a variety of stakeholders. We detail characteristics of the languages to help researchers understand the challenges that these languages pose for NER. We analyze our datasets and conduct an extensive empirical evaluation of state-of-the-art methods across both supervised and transfer learning settings. We release the data, code, and models in order to inspire future research on African NLP.