Davar, Amirreza
Data-Driven Contact-Aware Control Method for Real-Time Deformable Tool Manipulation: A Case Study in the Environmental Swabbing
Mahmoudi, Siavash, Davar, Amirreza, Wang, Dongyi
S automation advances, robots are increasingly utilized for complex tasks, reducing manual labor in hazardous environments while improving efficiency, precision, and cost-effectiveness [1]. However, real-world robotic applications require seamless interaction with deformable objects, which presents significant challenges due to material flexibility and unpredictable shape changes [2]. Unlike rigid object manipulation, deformable object manipulation (DOM) requires real-time adaptive control to compensate for continuous state variations and external forces. Traditional physics-based control models, such as mass-spring systems and finite element methods [3], [4], [5], attempt to model deformable object behavior but often fall short in real-world applications due to the sensitvity of control parameters and the difficulty of modeling complex contact dynamics. To address these limitations, recent research has shifted toward machine learning and data-driven approaches, where robots learn from sensor feedback or demonstrations rather than relying on hard-coded models [6]. Predictive learning models [7], [8], [9] have proven effective for latent space learning and object behavior forecasting, improving adaptability across applications such as fabric repositioning [10], crop harvesting [11], [12], medical robotics [13], and deformable linear object manipulation [14], [15]. While significant progress has been made in DOM, little research has focused on deformable tool manipulation (DTM), which introduces additional complexities such as bending dynamics, force regulation, and stability issues.