Goto

Collaborating Authors

 Dauwels, Justin


Masked Generative Priors Improve World Models Sequence Modelling Capabilities

arXiv.org Artificial Intelligence

Deep Reinforcement Learning (RL) has become the leading approach for creating artificial agents in complex environments. Model-based approaches, which are RL methods with world models that predict environment dynamics, are among the most promising directions for improving data efficiency, forming a critical step toward bridging the gap between research and real-world deployment. In particular, world models enhance sample efficiency by learning in imagination, which involves training a generative sequence model of the environment in a self-supervised manner. Recently, Masked Generative Modelling has emerged as a more efficient and superior inductive bias for modelling and generating token sequences. Building on the Efficient Stochastic Transformer-based World Models (STORM) architecture, we replace the traditional MLP prior with a Masked Generative Prior (e.g., MaskGIT Prior) and introduce GIT-STORM. We evaluate our model on two downstream tasks: reinforcement learning and video prediction. GIT-STORM demonstrates substantial performance gains in RL tasks on the Atari 100k benchmark. Moreover, we apply Transformer-based World Models to continuous action environments for the first time, addressing a significant gap in prior research. To achieve this, we employ a state mixer function that integrates latent state representations with actions, enabling our model to handle continuous control tasks. We validate this approach through qualitative and quantitative analyses on the DeepMind Control Suite, showcasing the effectiveness of Transformer-based World Models in this new domain. Our results highlight the versatility and efficacy of the MaskGIT dynamics prior, paving the way for more accurate world models and effective RL policies.


$\alpha$-TCVAE: On the relationship between Disentanglement and Diversity

arXiv.org Artificial Intelligence

Understanding and developing optimal representations has long been foundational in machine learning (ML). While disentangled representations have shown promise in generative modeling and representation learning, their downstream usefulness remains debated. Recent studies re-defined disentanglement through a formal connection to symmetries, emphasizing the ability to reduce latent domains (i.e., ML problem spaces) and consequently enhance data efficiency and generative capabilities. However, from an information theory viewpoint, assigning a complex attribute (i.e., features) to a specific latent variable may be infeasible, limiting the applicability of disentangled representations to simple datasets. In this work, we introduce ฮฑ-TCVAE, a variational autoencoder optimized using a novel total correlation (TC) lower bound that maximizes disentanglement and latent variables informativeness. The proposed TC bound is grounded in information theory constructs, generalizes the ฮฒ-VAE lower bound, and can be reduced to a convex combination of the known variational information bottleneck (VIB) and conditional entropy bottleneck (CEB) terms. Moreover, we present quantitative analyses and correlation studies that support the idea that smaller latent domains (i.e., disentangled representations) lead to better generative capabilities and diversity. Additionally, we perform downstream task experiments from both representation and RL domains to assess our questions from a broader ML perspective. Our results demonstrate that ฮฑ-TCVAE consistently learns more disentangled representations than baselines and generates more diverse observations without sacrificing visual fidelity. Notably, ฮฑ-TCVAE exhibits marked improvements on MPI3D-Real, the most realistic disentangled dataset in our study, confirming its ability to represent complex datasets when maximizing the informativeness of individual variables. Finally, testing the proposed model off-the-shelf on a state-of-the-art model-based RL agent, Director, significantly shows ฮฑ-TCVAE downstream usefulness on the loconav Ant Maze task. The efficacy of machine learning (ML) algorithms is intrinsically tied to the quality of data representation (Bengio et al., 2013). Such representations are useful not only for standard downstream tasks such as supervised learning (Alemi et al., 2017) and reinforcement learning (RL) (Li, 2017), but also for tasks such as transfer learning (Zhuang et al., 2020) and zero-shot learning (Sun et al., 2021).


Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases

arXiv.org Artificial Intelligence

Unsupervised object-centric learning from videos is a promising approach towards learning compositional representations that can be applied to various downstream tasks, such as prediction and reasoning. Recently, it was shown that pretrained Vision Transformers (ViTs) can be useful to learn object-centric representations on real-world video datasets. However, while these approaches succeed at extracting objects from the scenes, the slot-based representations fail to maintain temporal consistency across consecutive frames in a video, i.e. the mapping of objects to slots changes across the video. To address this, we introduce Conditional Autoregressive Slot Attention (CA-SA), a framework that enhances the temporal consistency of extracted object-centric representations in video-centric vision tasks. Leveraging an autoregressive prior network to condition representations on previous timesteps and a novel consistency loss function, CA-SA predicts future slot representations and imposes consistency across frames. We present qualitative and quantitative results showing that our proposed method outperforms the considered baselines on downstream tasks, such as video prediction and visual question-answering tasks.


Bayesian-LoRA: LoRA based Parameter Efficient Fine-Tuning using Optimal Quantization levels and Rank Values trough Differentiable Bayesian Gates

arXiv.org Artificial Intelligence

It is a common practice in natural language processing to pre-train a single model on a general domain and then fine-tune it for downstream tasks. However, when it comes to Large Language Models, fine-tuning the entire model can be computationally expensive, resulting in very intensive energy consumption. As a result, several Parameter Efficient Fine-Tuning (PEFT) approaches were recently proposed. One of the most popular approaches is low-rank adaptation (LoRA), where the key insight is decomposing the update weights of the pre-trained model into two low-rank matrices. However, the proposed approaches either use the same rank value across all different weight matrices, which has been shown to be a sub-optimal choice, or do not use any quantization technique, one of the most important factors when it comes to a model's energy consumption. In this work, we propose Bayesian-LoRA which approaches low-rank adaptation and quantization from a Bayesian perspective by employing a prior distribution on both quantization levels and rank values. As a result, B-LoRA is able to fine-tune a pre-trained model on a specific downstream task, finding the optimal rank values and quantization levels for every low-rank matrix. We validate the proposed model by fine-tuning a pre-trained DeBERTaV3 on the GLUE benchmark. Moreover, we compare it to relevant baselines and present both qualitative and quantitative results, showing how the proposed approach is able to learn optimal-rank quantized matrices. B-LoRA performs on par with or better than the baselines while reducing the total number of bit operations by roughly 70% compared to the baseline methods.


Precipitation Nowcasting Using Physics Informed Discriminator Generative Models

arXiv.org Artificial Intelligence

Nowcasting leverages real-time atmospheric conditions to forecast weather over short periods. State-of-the-art models, including PySTEPS, encounter difficulties in accurately forecasting extreme weather events because of their unpredictable distribution patterns. In this study, we design a physics-informed neural network to perform precipitation nowcasting using the precipitation and meteorological data from the Royal Netherlands Meteorological Institute (KNMI). This model draws inspiration from the novel Physics-Informed Discriminator GAN (PID-GAN) formulation, directly integrating physics-based supervision within the adversarial learning framework. The proposed model adopts a GAN structure, featuring a Vector Quantization Generative Adversarial Network (VQ-GAN) and a Transformer as the generator, with a temporal discriminator serving as the discriminator. Our findings demonstrate that the PID-GAN model outperforms numerical and SOTA deep generative models in terms of precipitation nowcasting downstream metrics.


Extreme Precipitation Nowcasting using Transformer-based Generative Models

arXiv.org Artificial Intelligence

This paper presents an innovative approach to extreme precipitation nowcasting by employing Transformer-based generative models, namely NowcastingGPT with Extreme Value Loss (EVL) regularization. Leveraging a comprehensive dataset from the Royal Netherlands Meteorological Institute (KNMI), our study focuses on predicting short-term precipitation with high accuracy. We introduce a novel method for computing EVL without assuming fixed extreme representations, addressing the limitations of current models in capturing extreme weather events. We present both qualitative and quantitative analyses, demonstrating the superior performance of the proposed NowcastingGPT-EVL in generating accurate precipitation forecasts, especially when dealing with extreme precipitation events.


Investigating model performance in language identification: beyond simple error statistics

arXiv.org Artificial Intelligence

Language development experts need tools that can automatically identify languages from fluent, conversational speech, and provide reliable estimates of usage rates at the level of an individual recording. However, language identification systems are typically evaluated on metrics such as equal error rate and balanced accuracy, applied at the level of an entire speech corpus. These overview metrics do not provide information about model performance at the level of individual speakers, recordings, or units of speech with different linguistic characteristics. Overview statistics may therefore mask systematic errors in model performance for some subsets of the data, and consequently, have worse performance on data derived from some subsets of human speakers, creating a kind of algorithmic bias. In the current paper, we investigate how well a number of language identification systems perform on individual recordings and speech units with different linguistic properties in the MERLIon CCS Challenge. The Challenge dataset features accented English-Mandarin code-switched child-directed speech.


On the Simulation of Perception Errors in Autonomous Vehicles

arXiv.org Artificial Intelligence

Even though virtual testing of Autonomous Vehicles (AVs) has been well recognized as essential for safety assessment, AV simulators are still undergoing active development. One particularly challenging question is to effectively include the Sensing and Perception (S&P) subsystem into the simulation loop. In this article, we define Perception Error Models (PEM), a virtual simulation component that can enable the analysis of the impact of perception errors on AV safety, without the need to model the sensors themselves. We propose a generalized data-driven procedure towards parametric modeling and evaluate it using Apollo, an open-source driving software, and nuScenes, a public AV dataset. Additionally, we implement PEMs in SVL, an open-source vehicle simulator. Furthermore, we demonstrate the usefulness of PEM-based virtual tests, by evaluating camera, LiDAR, and camera-LiDAR setups. Our virtual tests highlight limitations in the current evaluation metrics, and the proposed approach can help study the impact of perception errors on AV safety.


CoPEM: Cooperative Perception Error Models for Autonomous Driving

arXiv.org Artificial Intelligence

In this paper, we introduce the notion of Cooperative Perception Error Models (coPEMs) towards achieving an effective and efficient integration of V2X solutions within a virtual test environment. We focus our analysis on the occlusion problem in the (onboard) perception of Autonomous Vehicles (AV), which can manifest as misdetection errors on the occluded objects. Cooperative perception (CP) solutions based on Vehicle-to-Everything (V2X) communications aim to avoid such issues by cooperatively leveraging additional points of view for the world around the AV. This approach usually requires many sensors, mainly cameras and LiDARs, to be deployed simultaneously in the environment either as part of the road infrastructure or on other traffic vehicles. However, implementing a large number of sensor models in a virtual simulation pipeline is often prohibitively computationally expensive. Therefore, in this paper, we rely on extending Perception Error Models (PEMs) to efficiently implement such cooperative perception solutions along with the errors and uncertainties associated with them. We demonstrate the approach by comparing the safety achievable by an AV challenged with a traffic scenario where occlusion is the primary cause of a potential collision.


Efficient Variational Bayesian Structure Learning of Dynamic Graphical Models

arXiv.org Machine Learning

Estimating time-varying graphical models are of paramount importance in various social, financial, biological, and engineering systems, since the evolution of such networks can be utilized for example to spot trends, detect anomalies, predict vulnerability, and evaluate the impact of interventions. Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness. Furthermore, these methods are computationally burdensome with time complexity O(NP^3) for P variables and N time points. As a remedy, we propose a low-complexity tuning-free Bayesian approach, named BADGE. Specifically, we impose temporally-dependent spike-and-slab priors on the graphs such that they are sparse and varying smoothly across time. A variational inference algorithm is then derived to learn the graph structures from the data automatically. Owning to the pseudo-likelihood and the mean-field approximation, the time complexity of BADGE is only O(NP^2). Additionally, by identifying the frequency-domain resemblance to the time-varying graphical models, we show that BADGE can be extended to learning frequency-varying inverse spectral density matrices, and yields graphical models for multivariate stationary time series. Numerical results on both synthetic and real data show that that BADGE can better recover the underlying true graphs, while being more efficient than the existing methods, especially for high-dimensional cases.