Daul, Christian
On the in vivo recognition of kidney stones using machine learning
Lopez-Tiro, Francisco, Estrade, Vincent, Hubert, Jacques, Flores-Araiza, Daniel, Gonzalez-Mendoza, Miguel, Ochoa-Ruiz, Gilberto, Daul, Christian
Determining the type of kidney stones allows urologists to prescribe a treatment to avoid recurrence of renal lithiasis. An automated in-vivo image-based classification method would be an important step towards an immediate identification of the kidney stone type required as a first phase of the diagnosis. In the literature it was shown on ex-vivo data (i.e., in very controlled scene and image acquisition conditions) that an automated kidney stone classification is indeed feasible. This pilot study compares the kidney stone recognition performances of six shallow machine learning methods and three deep-learning architectures which were tested with in-vivo images of the four most frequent urinary calculi types acquired with an endoscope during standard ureteroscopies. This contribution details the database construction and the design of the tested kidney stones classifiers. Even if the best results were obtained by the Inception v3 architecture (weighted precision, recall and F1-score of 0.97, 0.98 and 0.97, respectively), it is also shown that choosing an appropriate colour space and texture features allows a shallow machine learning method to approach closely the performances of the most promising deep-learning methods (the XGBoost classifier led to weighted precision, recall and F1-score values of 0.96). This paper is the first one that explores the most discriminant features to be extracted from images acquired during ureteroscopies.
Improving automatic endoscopic stone recognition using a multi-view fusion approach enhanced with two-step transfer learning
Lopez-Tiro, Francisco, Villalvazo-Avila, Elias, Betancur-Rengifo, Juan Pablo, Reyes-Amezcua, Ivan, Hubert, Jacques, Ochoa-Ruiz, Gilberto, Daul, Christian
This contribution presents a deep-learning method for extracting and fusing image information acquired from different viewpoints, with the aim to produce more discriminant object features for the identification of the type of kidney stones seen in endoscopic images. The model was further improved with a two-step transfer learning approach and by attention blocks to refine the learned feature maps. Deep feature fusion strategies improved the results of single view extraction backbone models by more than 6% in terms of accuracy of the kidney stones classification.
A metric learning approach for endoscopic kidney stone identification
Gonzalez-Zapata, Jorge, Lopez-Tiro, Francisco, Villalvazo-Avila, Elias, Flores-Araiza, Daniel, Hubert, Jacques, Mendez-Vazquez, Andres, Ochoa-Ruiz, Gilberto, Daul, Christian
Several Deep Learning (DL) methods have recently been proposed for an automated identification of kidney stones during an ureteroscopy to enable rapid therapeutic decisions. Even if these DL approaches led to promising results, they are mainly appropriate for kidney stone types for which numerous labelled data are available. However, only few labelled images are available for some rare kidney stone types. This contribution exploits Deep Metric Learning (DML) methods i) to handle such classes with few samples, ii) to generalize well to out of distribution samples, and iii) to cope better with new classes which are added to the database. The proposed Guided Deep Metric Learning approach is based on a novel architecture which was designed to learn data representations in an improved way. The solution was inspired by Few-Shot Learning (FSL) and makes use of a teacher-student approach. The teacher model (GEMINI) generates a reduced hypothesis space based on prior knowledge from the labeled data, and is used it as a guide to a student model (i.e., ResNet50) through a Knowledge Distillation scheme. Extensive tests were first performed on two datasets separately used for the recognition, namely a set of images acquired for the surfaces of the kidney stone fragments, and a set of images of the fragment sections. The proposed DML-approach improved the identification accuracy by 10% and 12% in comparison to DL-methods and other DML-approaches, respectively. Moreover, model embeddings from the two dataset types were merged in an organized way through a multi-view scheme to simultaneously exploit the information of surface and section fragments. Test with the resulting mixed model improves the identification accuracy by at least 3% and up to 30% with respect to DL-models and shallow machine learning methods, respectively.
A multi-centre polyp detection and segmentation dataset for generalisability assessment
Ali, Sharib, Jha, Debesh, Ghatwary, Noha, Realdon, Stefano, Cannizzaro, Renato, Salem, Osama E., Lamarque, Dominique, Daul, Christian, Riegler, Michael A., Anonsen, Kim V., Petlund, Andreas, Halvorsen, Pål, Rittscher, Jens, de Lange, Thomas, East, James E.
Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as \textit{PolypGen}) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation. Our dataset can be downloaded from \url{ https://doi.org/10.7303/syn26376615}.
Deep learning-based image exposure enhancement as a pre-processing for an accurate 3D colon surface reconstruction
Espinosa, Ricardo, Garcia-Vega, Carlos Axel, Ochoa-Ruiz, Gilberto, Lamarque, Dominique, Daul, Christian
This contribution shows how an appropriate image pre-processing can improve a deep-learning based 3D reconstruction of colon parts. The assumption is that, rather than global image illumination corrections, local under- and over-exposures should be corrected in colonoscopy. An overview of the pipeline including the image exposure correction and a RNN-SLAM is first given. Then, this paper quantifies the reconstruction accuracy of the endoscope trajectory in the colon with and without appropriate illumination correction
A translational pathway of deep learning methods in GastroIntestinal Endoscopy
Ali, Sharib, Dmitrieva, Mariia, Ghatwary, Noha, Bano, Sophia, Polat, Gorkem, Temizel, Alptekin, Krenzer, Adrian, Hekalo, Amar, Guo, Yun Bo, Matuszewski, Bogdan, Gridach, Mourad, Voiculescu, Irina, Yoganand, Vishnusai, Chavan, Arnav, Raj, Aryan, Nguyen, Nhan T., Tran, Dat Q., Huynh, Le Duy, Boutry, Nicolas, Rezvy, Shahadate, Chen, Haijian, Choi, Yoon Ho, Subramanian, Anand, Balasubramanian, Velmurugan, Gao, Xiaohong W., Hu, Hongyu, Liao, Yusheng, Stoyanov, Danail, Daul, Christian, Realdon, Stefano, Cannizzaro, Renato, Lamarque, Dominique, Tran-Nguyen, Terry, Bailey, Adam, Braden, Barbara, East, James, Rittscher, Jens
The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent problems in developing reliable computer aided detection and diagnosis endoscopy systems and suggest a pathway for clinical translation of technologies. Whilst endoscopy is a widely used diagnostic and treatment tool for hollow-organs, there are several core challenges often faced by endoscopists, mainly: 1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identifying subtle precancerous precursors and cancer abnormalities. Artefacts often affect the robustness of deep learning methods applied to the gastrointestinal tract organs as they can be confused with tissue of interest. EndoCV2020 challenges are designed to address research questions in these remits. In this paper, we present a summary of methods developed by the top 17 teams and provide an objective comparison of state-of-the-art methods and methods designed by the participants for two sub-challenges: i) artefact detection and segmentation (EAD2020), and ii) disease detection and segmentation (EDD2020). Multi-center, multi-organ, multi-class, and multi-modal clinical endoscopy datasets were compiled for both EAD2020 and EDD2020 sub-challenges. An out-of-sample generalisation ability of detection algorithms was also evaluated. Whilst most teams focused on accuracy improvements, only a few methods hold credibility for clinical usability. The best performing teams provided solutions to tackle class imbalance, and variabilities in size, origin, modality and occurrences by exploring data augmentation, data fusion, and optimal class thresholding techniques.
Endoscopy artifact detection (EAD 2019) challenge dataset
Ali, Sharib, Zhou, Felix, Daul, Christian, Braden, Barbara, Bailey, Adam, Realdon, Stefano, East, James, Wagnières, Georges, Loschenov, Victor, Grisan, Enrico, Blondel, Walter, Rittscher, Jens
Endoscopic artifacts are a core challenge in facilitating the diagnosis and treatment of diseases in hollow organs. Precise detection of specific artifacts like pixel saturations, motion blur, specular reflections, bubbles and debris is essential for high-quality frame restoration and is crucial for realizing reliable computer-assisted tools for improved patient care. At present most videos in endoscopy are currently not analyzed due to the abundant presence of multi-class artifacts in video frames. Through the endoscopic artifact detection (EAD 2019) challenge, we address this key bottleneck problem by solving the accurate identification and localization of endoscopic frame artifacts to enable further key quantitative analysis of unusable video frames such as mosaicking and 3D reconstruction which is crucial for delivering improved patient care. This paper summarizes the challenge tasks and describes the dataset and evaluation criteria established in the EAD 2019 challenge.