Goto

Collaborating Authors

 Dau, Hai-Dang


Generalised Parallel Tempering: Flexible Replica Exchange via Flows and Diffusions

arXiv.org Machine Learning

Parallel Tempering (PT) is a classical MCMC algorithm designed for leveraging parallel computation to sample efficiently from high-dimensional, multimodal or otherwise complex distributions via annealing. One limitation of the standard formulation of PT is the growth of computational resources required to generate high-quality samples, as measured by effective sample size or round trip rate, for increasingly challenging distributions. To address this issue, we propose the framework: Generalised Parallel Tempering (GePT) which allows for the incorporation of recent advances in modern generative modelling, such as normalising flows and diffusion models, within Parallel Tempering, while maintaining the same theoretical guarantees as MCMC-based methods. For instance, we show that this allows us to utilise diffusion models in a parallelised manner, bypassing the usual computational cost of a large number of steps to generate quality samples. Further, we empirically demonstrate that GePT can improve sample quality and reduce the growth of computational resources required to handle complex distributions over the classical algorithm. Sampling from a complex probability distribution π over a state-space X, whose density π(x) is only known up to a normalising constant, is a fundamental task in modern statistical inference.


Particle Denoising Diffusion Sampler

arXiv.org Artificial Intelligence

Denoising diffusion models have become ubiquitous for generative modeling. The core idea is to transport the data distribution to a Gaussian by using a diffusion. Approximate samples from the data distribution are then obtained by estimating the time-reversal of this diffusion using score matching ideas. We follow here a similar strategy to sample from unnormalized probability densities and compute their normalizing constants. However, the time-reversed diffusion is here simulated by using an original iterative particle scheme relying on a novel score matching loss. Contrary to standard denoising diffusion models, the resulting Particle Denoising Diffusion Sampler (PDDS) provides asymptotically consistent estimates under mild assumptions. We demonstrate PDDS on multimodal and high dimensional sampling tasks.