Goto

Collaborating Authors

 Daskalakis, Constantinos


A Converse to Banach's Fixed Point Theorem and its CLS Completeness

arXiv.org Machine Learning

Banach's fixed point theorem for contraction maps has been widely used to analyze the convergence of iterative methods in non-convex problems. It is a common experience, however, that iterative maps fail to be globally contracting under the natural metric in their domain, making the applicability of Banach's theorem limited. We explore how generally we can apply Banach's fixed point theorem to establish the convergence of iterative methods when pairing it with carefully designed metrics. Our first result is a strong converse of Banach's theorem, showing that it is a universal analysis tool for establishing global convergence of iterative methods to unique fixed points, and for bounding their convergence rate. In other words, we show that, whenever an iterative map globally converges to a unique fixed point, there exists a metric under which the iterative map is contracting and which can be used to bound the number of iterations until convergence. We illustrate our approach in the widely used power method, providing a new way of bounding its convergence rate through contraction arguments. We next consider the computational complexity of Banach's fixed point theorem. Making the proof of our converse theorem constructive, we show that computing a fixed point whose existence is guaranteed by Banach's fixed point theorem is CLS-complete. We thus provide the first natural complete problem for the class CLS, which was defined in [Daskalakis, Papadimitriou 2011] to capture the complexity of problems such as P-matrix LCP, computing KKT-points, and finding mixed Nash equilibria in congestion and network coordination games.


Training GANs with Optimism

arXiv.org Machine Learning

We address the issue of limit cycling behavior in training Generative Adversarial Networks and propose the use of Optimistic Mirror Decent (OMD) for training Wasserstein GANs. Recent theoretical results have shown that optimistic mirror decent (OMD) can enjoy faster regret rates in the context of zero-sum games. WGANs is exactly a context of solving a zero-sum game with simultaneous no-regret dynamics. Moreover, we show that optimistic mirror decent addresses the limit cycling problem in training WGANs. We formally show that in the case of bi-linear zero-sum games the last iterate of OMD dynamics converges to an equilibrium, in contrast to GD dynamics which are bound to cycle. We also portray the huge qualitative difference between GD and OMD dynamics with toy examples, even when GD is modified with many adaptations proposed in the recent literature, such as gradient penalty or momentum. We apply OMD WGAN training to a bioinformatics problem of generating DNA sequences. We observe that models trained with OMD achieve consistently smaller KL divergence with respect to the true underlying distribution, than models trained with GD variants. Finally, we introduce a new algorithm, Optimistic Adam, which is an optimistic variant of Adam. We apply it to WGAN training on CIFAR10 and observe improved performance in terms of inception score as compared to Adam.


Concentration of Multilinear Functions of the Ising Model with Applications to Network Data

Neural Information Processing Systems

We prove near-tight concentration of measure for polynomial functions of the Ising model, under high temperature, improving the radius of concentration guaranteed by known results by polynomial factors in the dimension (i.e.~the number of nodes in the Ising model). We show that our results are optimal up to logarithmic factors in the dimension. We obtain our results by extending and strengthening the exchangeable-pairs approach used to prove concentration of measure in this setting by Chatterjee. We demonstrate the efficacy of such functions as statistics for testing the strength of interactions in social networks in both synthetic and real world data.


The Robust Manifold Defense: Adversarial Training using Generative Models

arXiv.org Machine Learning

Deep neural networks are demonstrating excellent performance on several classical vision problems. However, these networks are vulnerable to adversarial examples, minutely modified images that induce arbitrary attacker-chosen output from the network. We propose a mechanism to protect against these adversarial inputs based on a generative model of the data. We introduce a pre-processing step that projects on the range of a generative model using gradient descent before feeding an input into a classifier. We show that this step provides the classifier with robustness against first-order, substitute model, and combined adversarial attacks. Using a min-max formulation, we show that there may exist adversarial examples even in the range of the generator, natural-looking images extremely close to the decision boundary for which the classifier has unjustifiedly high confidence. We show that adversarial training on the generative manifold can be used to make a classifier that is robust to these attacks. Finally, we show how our method can be applied even without a pre-trained generative model using a recent method called the deep image prior. We evaluate our method on MNIST, CelebA and Imagenet and show robustness against the current state of the art attacks.


Concentration of Multilinear Functions of the Ising Model with Applications to Network Data

arXiv.org Machine Learning

We prove near-tight concentration of measure for polynomial functions of the Ising model under high temperature. For any degree $d$, we show that a degree-$d$ polynomial of a $n$-spin Ising model exhibits exponential tails that scale as $\exp(-r^{2/d})$ at radius $r=\tilde{\Omega}_d(n^{d/2})$. Our concentration radius is optimal up to logarithmic factors for constant $d$, improving known results by polynomial factors in the number of spins. We demonstrate the efficacy of polynomial functions as statistics for testing the strength of interactions in social networks in both synthetic and real world data.


Ten Steps of EM Suffice for Mixtures of Two Gaussians

arXiv.org Machine Learning

The Expectation-Maximization (EM) algorithm is a widely used method for maximum likelihood estimation in models with latent variables. For estimating mixtures of Gaussians, its iteration can be viewed as a soft version of the k-means clustering algorithm. Despite its wide use and applications, there are essentially no known convergence guarantees for this method. We provide global convergence guarantees for mixtures of two Gaussians with known covariance matrices. We show that the population version of EM, where the algorithm is given access to infinitely many samples from the mixture, converges geometrically to the correct mean vectors, and provide simple, closed-form expressions for the convergence rate. As a simple illustration, we show that, in one dimension, ten steps of the EM algorithm initialized at infinity result in less than 1\% error estimation of the means. In the finite sample regime, we show that, under a random initialization, $\tilde{O}(d/\epsilon^2)$ samples suffice to compute the unknown vectors to within $\epsilon$ in Mahalanobis distance, where $d$ is the dimension. In particular, the error rate of the EM based estimator is $\tilde{O}\left(\sqrt{d \over n}\right)$ where $n$ is the number of samples, which is optimal up to logarithmic factors.


Square Hellinger Subadditivity for Bayesian Networks and its Applications to Identity Testing

arXiv.org Machine Learning

We show that the square Hellinger distance between two Bayesian networks on the same directed graph, $G$, is subadditive with respect to the neighborhoods of $G$. Namely, if $P$ and $Q$ are the probability distributions defined by two Bayesian networks on the same DAG, our inequality states that the square Hellinger distance, $H^2(P,Q)$, between $P$ and $Q$ is upper bounded by the sum, $\sum_v H^2(P_{\{v\} \cup \Pi_v}, Q_{\{v\} \cup \Pi_v})$, of the square Hellinger distances between the marginals of $P$ and $Q$ on every node $v$ and its parents $\Pi_v$ in the DAG. Importantly, our bound does not involve the conditionals but the marginals of $P$ and $Q$. We derive a similar inequality for more general Markov Random Fields. As an application of our inequality, we show that distinguishing whether two Bayesian networks $P$ and $Q$ on the same (but potentially unknown) DAG satisfy $P=Q$ vs $d_{\rm TV}(P,Q)>\epsilon$ can be performed from $\tilde{O}(|\Sigma|^{3/4(d+1)} \cdot n/\epsilon^2)$ samples, where $d$ is the maximum in-degree of the DAG and $\Sigma$ the domain of each variable of the Bayesian networks. If $P$ and $Q$ are defined on potentially different and potentially unknown trees, the sample complexity becomes $\tilde{O}(|\Sigma|^{4.5} n/\epsilon^2)$, whose dependence on $n, \epsilon$ is optimal up to logarithmic factors. Lastly, if $P$ and $Q$ are product distributions over $\{0,1\}^n$ and $Q$ is known, the sample complexity becomes $O(\sqrt{n}/\epsilon^2)$, which is optimal up to constant factors.


Optimal Testing for Properties of Distributions

Neural Information Processing Systems

Given samples from an unknown distribution, p, is it possible to distinguish whether p belongs to some class of distributions C versus p being far from every distribution in C? This fundamental question has receivedtremendous attention in Statistics, albeit focusing onasymptotic analysis, as well as in Computer Science, wherethe emphasis has been on small sample size and computationalcomplexity. Nevertheless, even for basic classes ofdistributions such as monotone, log-concave, unimodal, and monotone hazard rate, the optimal sample complexity is unknown.We provide a general approach via which we obtain sample-optimal and computationally efficient testers for all these distribution families. At the core of our approach is an algorithm which solves the following problem:Given samplesfrom an unknown distribution p, and a known distribution q, are p and q close in Chi^2-distance, or far in total variation distance?The optimality of all testers is established by providing matching lower bounds. Finally, a necessary building block for our tester and important byproduct of our work are the first known computationally efficient proper learners for discretelog-concave and monotone hazard rate distributions. We exhibit the efficacy of our testers via experimental analysis.


Optimum Statistical Estimation with Strategic Data Sources

arXiv.org Machine Learning

We propose an optimum mechanism for providing monetary incentives to the data sources of a statistical estimator such as linear regression, so that high quality data is provided at low cost, in the sense that the sum of payments and estimation error is minimized. The mechanism applies to a broad range of estimators, including linear and polynomial regression, kernel regression, and, under some additional assumptions, ridge regression. It also generalizes to several objectives, including minimizing estimation error subject to budget constraints. Besides our concrete results for regression problems, we contribute a mechanism design framework through which to design and analyze statistical estimators whose examples are supplied by workers with cost for labeling said examples.