Goto

Collaborating Authors

 Dasgupta, Anirban


Linear Programming based Approximation to Individually Fair k-Clustering with Outliers

arXiv.org Machine Learning

Individual fairness guarantees are often desirable properties to have, but they become hard to formalize when the dataset contains outliers. Here, we investigate the problem of developing an individually fair $k$-means clustering algorithm for datasets that contain outliers. That is, given $n$ points and $k$ centers, we want that for each point which is not an outlier, there must be a center within the $\frac{n}{k}$ nearest neighbours of the given point. While a few of the recent works have looked into individually fair clustering, this is the first work that explores this problem in the presence of outliers for $k$-means clustering. For this purpose, we define and solve a linear program (LP) that helps us identify the outliers. We exclude these outliers from the dataset and apply a rounding algorithm that computes the $k$ centers, such that the fairness constraint of the remaining points is satisfied. We also provide theoretical guarantees that our method leads to a guaranteed approximation of the fair radius as well as the clustering cost. We also demonstrate our techniques empirically on real-world datasets.


Faster Inference Time for GNNs using coarsening

arXiv.org Machine Learning

Graph Neural Networks (GNNs) have shown remarkable success in various graph-based tasks, including node classification, node regression, graph classification, and graph regression. However, their scalability remains a significant challenge, particularly when dealing with large-scale graphs. To tackle this challenge, coarsening-based methods are used to reduce the graph into a smaller one, resulting in faster computation. However, no previous research has tackled the computation cost during the inference. This motivated us to ponder whether we can trade off the improvement in training time of coarsening-based approaches with inference time. This paper presents a novel approach to improve the scalability of GNNs through subgraph-based techniques. We reduce the computational burden during the training and inference phases by using the coarsening algorithm to partition large graphs into smaller, manageable subgraphs. Previously, graph-level tasks had not been explored using this approach. We propose a novel approach for using the coarsening algorithm for graph-level tasks such as graph classification and graph regression. We conduct extensive experiments on multiple benchmark datasets to evaluate the performance of our approach. The results demonstrate that our subgraph-based GNN method achieves competitive results in node classification, node regression, graph classification, and graph regression tasks compared to traditional GNN models. Furthermore, our approach significantly reduces the inference time, enabling the practical application of GNNs to large-scale graphs.


Improving Expressivity of Graph Neural Networks using Localization

arXiv.org Artificial Intelligence

In this paper, we propose localized versions of Weisfeiler-Leman (WL) algorithms in an effort to both increase the expressivity, as well as decrease the computational overhead. We focus on the specific problem of subgraph counting and give localized versions of $k-$WL for any $k$. We analyze the power of Local $k-$WL and prove that it is more expressive than $k-$WL and at most as expressive as $(k+1)-$WL. We give a characterization of patterns whose count as a subgraph and induced subgraph are invariant if two graphs are Local $k-$WL equivalent. We also introduce two variants of $k-$WL: Layer $k-$WL and recursive $k-$WL. These methods are more time and space efficient than applying $k-$WL on the whole graph. We also propose a fragmentation technique that guarantees the exact count of all induced subgraphs of size at most 4 using just $1-$WL. The same idea can be extended further for larger patterns using $k>1$. We also compare the expressive power of Local $k-$WL with other GNN hierarchies and show that given a bound on the time-complexity, our methods are more expressive than the ones mentioned in Papp and Wattenhofer[2022a].


Simple Weak Coresets for Non-Decomposable Classification Measures

arXiv.org Artificial Intelligence

While coresets have been growing in terms of their application, barring few exceptions, they have mostly been limited to unsupervised settings. We consider supervised classification problems, and non-decomposable evaluation measures in such settings. We show that stratified uniform sampling based coresets have excellent empirical performance that are backed by theoretical guarantees too. We focus on the F1 score and Matthews Correlation Coefficient, two widely used non-decomposable objective functions that are nontrivial to optimize for and show that uniform coresets attain a lower bound for coreset size, and have good empirical performance, comparable with ``smarter'' coreset construction strategies.


A Novel Pipeline for Improving Optical Character Recognition through Post-processing Using Natural Language Processing

arXiv.org Artificial Intelligence

Optical Character Recognition (OCR) technology finds applications in digitizing books and unstructured documents, along with applications in other domains such as mobility statistics, law enforcement, traffic, security systems, etc. The state-of-the-art methods work well with the OCR with printed text on license plates, shop names, etc. However, applications such as printed textbooks and handwritten texts have limited accuracy with existing techniques. The reason may be attributed to similar-looking characters and variations in handwritten characters. Since these issues are challenging to address with OCR technologies exclusively, we propose a post-processing approach using Natural Language Processing (NLP) tools. This work presents an end-to-end pipeline that first performs OCR on the handwritten or printed text and then improves its accuracy using NLP.


Streaming Coresets for Symmetric Tensor Factorization

arXiv.org Machine Learning

Factorizing tensors has recently become an important optimization module in a number of machine learning pipelines, especially in latent variable models. We show how to do this efficiently in the streaming setting. Given a set of $n$ vectors, each in $\mathbb{R}^d$, we present algorithms to select a sublinear number of these vectors as coreset, while guaranteeing that the CP decomposition of the $p$-moment tensor of the coreset approximates the corresponding decomposition of the $p$-moment tensor computed from the full data. We introduce two novel algorithmic techniques: online filtering and kernelization. Using these two, we present six algorithms that achieve different tradeoffs of coreset size, update time and working space, beating or matching various state of the art algorithms. In the case of matrices ($2$-ordered tensor), our online row sampling algorithm guarantees $(1 \pm \epsilon)$ relative error spectral approximation. We show applications of our algorithms in learning single topic modeling.


On Coresets For Regularized Regression

arXiv.org Machine Learning

We study the effect of norm based regularization on the size of coresets for regression problems. Specifically, given a matrix $ \mathbf{A} \in {\mathbb{R}}^{n \times d}$ with $n\gg d$ and a vector $\mathbf{b} \in \mathbb{R} ^ n $ and $\lambda > 0$, we analyze the size of coresets for regularized versions of regression of the form $\|\mathbf{Ax}-\mathbf{b}\|_p^r + \lambda\|{\mathbf{x}}\|_q^s$ . Prior work has shown that for ridge regression (where $p,q,r,s=2$) we can obtain a coreset that is smaller than the coreset for the unregularized counterpart i.e. least squares regression (Avron et al). We show that when $r \neq s$, no coreset for regularized regression can have size smaller than the optimal coreset of the unregularized version. The well known lasso problem falls under this category and hence does not allow a coreset smaller than the one for least squares regression. We propose a modified version of the lasso problem and obtain for it a coreset of size smaller than the least square regression. We empirically show that the modified version of lasso also induces sparsity in solution, similar to the original lasso. We also obtain smaller coresets for $\ell_p$ regression with $\ell_p$ regularization. We extend our methods to multi response regularized regression. Finally, we empirically demonstrate the coreset performance for the modified lasso and the $\ell_1$ regression with $\ell_1$ regularization.


Mallows Models for Top-k Lists

Neural Information Processing Systems

The classic Mallows model is a widely-used tool to realize distributions on per- mutations. Motivated by common practical situations, in this paper, we generalize Mallows to model distributions on top-k lists by using a suitable distance measure between top-k lists. Unlike many earlier works, our model is both analytically tractable and computationally efficient. We demonstrate this by studying two basic problems in this model, namely, sampling and reconstruction, from both algorithmic and experimental points of view.


Mallows Models for Top-k Lists

Neural Information Processing Systems

The classic Mallows model is a widely-used tool to realize distributions on per- mutations. Motivated by common practical situations, in this paper, we generalize Mallows to model distributions on top-k lists by using a suitable distance measure between top-k lists. Unlike many earlier works, our model is both analytically tractable and computationally efficient. We demonstrate this by studying two basic problems in this model, namely, sampling and reconstruction, from both algorithmic and experimental points of view.


Discovering Topical Interactions in Text-based Cascades using Hidden Markov Hawkes Processes

arXiv.org Machine Learning

Social media conversations unfold based on complex interactions between users, topics and time. While recent models have been proposed to capture network strengths between users, users' topical preferences and temporal patterns between posting and response times, interaction patterns between topics has not been studied. We propose the Hidden Markov Hawkes Process (HMHP) that incorporates topical Markov Chains within Hawkes processes to jointly model topical interactions along with user-user and user-topic patterns. We propose a Gibbs sampling algorithm for HMHP that jointly infers the network strengths, diffusion paths, the topics of the posts as well as the topic-topic interactions. We show using experiments on real and semi-synthetic data that HMHP is able to generalize better and recover the network strengths, topics and diffusion paths more accurately than state-of-the-art baselines. More interestingly, HMHP finds insightful interactions between topics in real tweets which no existing model is able to do.