Goto

Collaborating Authors

 Das, Partha Pratim


Evaluating Negative Sampling Approaches for Neural Topic Models

arXiv.org Artificial Intelligence

Negative sampling has emerged as an effective technique that enables deep learning models to learn better representations by introducing the paradigm of learn-to-compare. The goal of this approach is to add robustness to deep learning models to learn better representation by comparing the positive samples against the negative ones. Despite its numerous demonstrations in various areas of computer vision and natural language processing, a comprehensive study of the effect of negative sampling in an unsupervised domain like topic modeling has not been well explored. In this paper, we present a comprehensive analysis of the impact of different negative sampling strategies on neural topic models. We compare the performance of several popular neural topic models by incorporating a negative sampling technique in the decoder of variational autoencoder-based neural topic models. Experiments on four publicly available datasets demonstrate that integrating negative sampling into topic models results in significant enhancements across multiple aspects, including improved topic coherence, richer topic diversity, and more accurate document classification. Manual evaluations also indicate that the inclusion of negative sampling into neural topic models enhances the quality of the generated topics. These findings highlight the potential of negative sampling as a valuable tool for advancing the effectiveness of neural topic models.


Unsupervised Multi-Clustering and Decision-Making Strategies for 4D-STEM Orientation Mapping

arXiv.org Artificial Intelligence

This study presents a novel integration of unsupervised learning and decision-making strategies for the advanced analysis of 4D-STEM datasets, with a focus on non-negative matrix factorization (NMF) as the primary clustering method. Our approach introduces a systematic framework to determine the optimal number of components (k) required for robust and interpretable orientation mapping. By leveraging the K-Component Loss method and Image Quality Assessment (IQA) metrics, we effectively balance reconstruction fidelity and model complexity. Additionally, we highlight the critical role of dataset preprocessing in improving clustering stability and accuracy. Furthermore, our spatial weight matrix analysis provides insights into overlapping regions within the dataset by employing threshold-based visualization, facilitating a detailed understanding of cluster interactions. The results demonstrate the potential of combining NMF with advanced IQA metrics and preprocessing techniques for reliable orientation mapping and structural analysis in 4D-STEM datasets, paving the way for future applications in multi-dimensional material characterization.


Perspective Chapter: MOOCs in India: Evolution, Innovation, Impact, and Roadmap

arXiv.org Artificial Intelligence

With the largest population of the world and one of the highest enrolments in higher education, India needs efficient and effective means to educate its learners. India started focusing on open and digital education in 1980's and its efforts were escalated in 2009 through the NMEICT program of the Government of India. A study by the Government and FICCI in 2014 noted that India cannot meet its educational needs just by capacity building in brick and mortar institutions. It was decided that ongoing MOOCs projects under the umbrella of NMEICT will be further strengthened over its second (2017-21) and third (2021-26) phases. NMEICT now steers NPTEL or SWAYAM (India's MOOCs) and several digital learning projects including Virtual Labs, e-Yantra, Spoken Tutorial, FOSSEE, and National Digital Library on India - the largest digital education library in the world. Further, India embraced its new National Education Policy in 2020 to strongly foster online education. In this chapter, we take a deep look into the evolution of MOOCs in India, its innovations, its current status and impact, and the roadmap for the next decade to address its challenges and grow. AI-powered MOOCs is an emerging opportunity for India to lead MOOCs worldwide.


Enhancing FKG.in: automating Indian food composition analysis

arXiv.org Artificial Intelligence

This paper presents a novel approach to compute food composition data for Indian recipes using a knowledge graph for Indian food (FKG.in) and LLMs. The primary focus is to provide a broad overview of an automated food composition analysis workflow and describe its core functionalities: nutrition data aggregation, food composition analysis, and LLM-augmented information resolution. This workflow aims to complement FKG.in and iteratively supplement food composition data from verified knowledge bases. Additionally, this paper highlights the challenges of representing Indian food and accessing food composition data digitally. It also reviews three key sources of food composition data: the Indian Food Composition Tables, the Indian Nutrient Databank, and the Nutritionix API. Furthermore, it briefly outlines how users can interact with the workflow to obtain diet-based health recommendations and detailed food composition information for numerous recipes. We then explore the complex challenges of analyzing Indian recipe information across dimensions such as structure, multilingualism, and uncertainty as well as present our ongoing work on LLM-based solutions to address these issues. The methods proposed in this workshop paper for AI-driven knowledge curation and information resolution are application-agnostic, generalizable, and replicable for any domain.


Generative AI for Software Metadata: Overview of the Information Retrieval in Software Engineering Track at FIRE 2023

arXiv.org Artificial Intelligence

The Information Retrieval in Software Engineering (IRSE) track aims to develop solutions for automated evaluation of code comments in a machine learning framework based on human and large language model generated labels. In this track, there is a binary classification task to classify comments as useful and not useful. The dataset consists of 9048 code comments and surrounding code snippet pairs extracted from open source github C based projects and an additional dataset generated individually by teams using large language models. Overall 56 experiments have been submitted by 17 teams from various universities and software companies. The submissions have been evaluated quantitatively using the F1-Score and qualitatively based on the type of features developed, the supervised learning model used and their corresponding hyper-parameters. The labels generated from large language models increase the bias in the prediction model but lead to less over-fitted results.


Generation of Highlights from Research Papers Using Pointer-Generator Networks and SciBERT Embeddings

arXiv.org Artificial Intelligence

Nowadays many research articles are prefaced with research highlights to summarize the main findings of the paper. Highlights not only help researchers precisely and quickly identify the contributions of a paper, they also enhance the discoverability of the article via search engines. We aim to automatically construct research highlights given certain segments of a research paper. We use a pointer-generator network with coverage mechanism and a contextual embedding layer at the input that encodes the input tokens into SciBERT embeddings. We test our model on a benchmark dataset, CSPubSum, and also present MixSub, a new multi-disciplinary corpus of papers for automatic research highlight generation. For both CSPubSum and MixSub, we have observed that the proposed model achieves the best performance compared to related variants and other models proposed in the literature. On the CSPubSum dataset, our model achieves the best performance when the input is only the abstract of a paper as opposed to other segments of the paper. It produces ROUGE-1, ROUGE-2 and ROUGE-L F1-scores of 38.26, 14.26 and 35.51, respectively, METEOR score of 32.62, and BERTScore F1 of 86.65 which outperform all other baselines. On the new MixSub dataset, where only the abstract is the input, our proposed model (when trained on the whole training corpus without distinguishing between the subject categories) achieves ROUGE-1, ROUGE-2 and ROUGE-L F1-scores of 31.78, 9.76 and 29.3, respectively, METEOR score of 24.00, and BERTScore F1 of 85.25.


Smart Knowledge Transfer using Google-like Search

arXiv.org Artificial Intelligence

To address the issue of rising software maintenance cost due to program comprehension challenges, we propose SMARTKT (Smart Knowledge Transfer), a search framework, which extracts and integrates knowledge related to various aspects of an application in form of a semantic graph. This graph supports syntax and semantic queries and converts the process of program comprehension into a {\em google-like} search problem.


Improving Contextualized Topic Models with Negative Sampling

arXiv.org Artificial Intelligence

Topic modeling has emerged as a dominant method for exploring large document collections. Recent approaches to topic modeling use large contextualized language models and variational autoencoders. In this paper, we propose a negative sampling mechanism for a contextualized topic model to improve the quality of the generated topics. In particular, during model training, we perturb the generated document-topic vector and use a triplet loss to encourage the document reconstructed from the correct document-topic vector to be similar to the input document and dissimilar to the document reconstructed from the perturbed vector. Experiments for different topic counts on three publicly available benchmark datasets show that in most cases, our approach leads to an increase in topic coherence over that of the baselines. Our model also achieves very high topic diversity.