Goto

Collaborating Authors

 Das, Nibaran


Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features Selection

arXiv.org Artificial Intelligence

Cervical cancer is one of the most deadly and common diseases among women worldwide. It is completely curable if diagnosed in an early stage, but the tedious and costly detection procedure makes it unviable to conduct population-wise screening. Thus, to augment the effort of the clinicians, in this paper, we propose a fully automated framework that utilizes Deep Learning and feature selection using evolutionary optimization for cytology image classification. The proposed framework extracts Deep feature from several Convolution Neural Network models and uses a two-step feature reduction approach to to ensure reduction in computation cost and faster convergence. The features extracted from the CNN models form a large feature space whose dimensionality is reduced using Principal Component Analysis while preserving 99% of the variance. A non-redundant, optimal feature subset is selected from this feature space using an evolutionary optimization algorithm, the Grey Wolf Optimizer, thus improving the classification performance. Finally, the selected feature subset is used to train an SVM classifier for generating the final predictions. The proposed framework is evaluated on three publicly available benchmark datasets: Mendeley Liquid Based Cytology (4-class) dataset, Herlev Pap Smear (7-class) dataset, and the SIPaKMeD Pap Smear (5-class) dataset achieving classification accuracies of 99.47%, 98.32% and 97.87% respectively, thus justifying the reliability of the approach.


Handwritten Bangla Alphabet Recognition using an MLP Based Classifier

arXiv.org Artificial Intelligence

The work presented here involves the design of a Multi Layer Perceptron (MLP) based classifier for recognition of handwritten Bangla alphabet using a 76 element feature set Bangla is the second most popular script and language in the Indian subcontinent and the fifth most popular language in the world. The feature set developed for representing handwritten characters of Bangla alphabet includes 24 shadow features, 16 centroid features and 36 longest-run features. Recognition performances of the MLP designed to work with this feature set are experimentally observed as 86.46% and 75.05% on the samples of the training and the test sets respectively. The work has useful application in the development of a complete OCR system for handwritten Bangla text.


An MLP based Approach for Recognition of Handwritten `Bangla' Numerals

arXiv.org Artificial Intelligence

The work presented here involves the design of a Multi Layer Perceptron (MLP) based pattern classifier for recognition of handwritten Bangla digits using a 76 element feature vector. Bangla is the second most popular script and language in the Indian subcontinent and the fifth most popular language in the world. The feature set developed for representing handwritten Bangla numerals here includes 24 shadow features, 16 centroid features and 36 longest-run features. On experimentation with a database of 6000 samples, the technique yields an average recognition rate of 96.67% evaluated after three-fold cross validation of results. It is useful for applications related to OCR of handwritten Bangla Digit and can also be extended to include OCR of handwritten characters of Bangla alphabet.