Das, Ariyam
How Much Are You Willing to Share? A "Poker-Styled" Selective Privacy Preserving Framework for Recommender Systems
Dareddy, Manoj Reddy, Das, Ariyam, Cho, Junghoo, Zaniolo, Carlo
Most industrial recommender systems rely on the popular collaborative filtering (CF) technique for providing personalized recommendations to its users. However, the very nature of CF is adversarial to the idea of user privacy, because users need to share their preferences with others in order to be grouped with like-minded people and receive accurate recommendations. While previous privacy preserving approaches have been successful inasmuch as they concealed user preference information to some extent from a centralized recommender system, they have also, nevertheless, incurred significant trade-offs in terms of privacy, scalability, and accuracy. They are also vulnerable to privacy breaches by malicious actors. In light of these observations, we propose a novel selective privacy preserving (SP2) paradigm that allows users to custom define the scope and extent of their individual privacies, by marking their personal ratings as either public (which can be shared) or private (which are never shared and stored only on the user device). Our SP2 framework works in two steps: (i) First, it builds an initial recommendation model based on the sum of all public ratings that have been shared by users and (ii) then, this public model is fine-tuned on each user's device based on the user private ratings, thus eventually learning a more accurate model. Furthermore, in this work, we introduce three different algorithms for implementing an end-to-end SP2 framework that can scale effectively from thousands to hundreds of millions of items. Our user survey shows that an overwhelming fraction of users are likely to rate much more items to improve the overall recommendations when they can control what ratings will be publicly shared with others.
ATOL: A Framework for Automated Analysis and Categorization of the Darkweb Ecosystem
Ghosh, Shalini (SRI International) | Porras, Phillip (SRI International) | Yegneswaran, Vinod (SRI International) | Nitz, Ken (SRI International) | Das, Ariyam (University of California, Los Angeles)
We present a framework for automated analysis and categorization of .onion websites in the darkweb to facilitate analyst situational awareness of new content that emerges from this dynamic landscape. Over the last two years, our team has developed a large-scale darkweb crawling infrastructure called OnionCrawler that acquires new onion domains on a daily basis, and crawls and indexes millions of pages from these new and previously known .onion sites. It stores this data into a research repository designed to help better understand Tor’s hidden service ecosystem. The analysis component of our framework is called Automated Tool for Onion Labeling (ATOL), which introduces a two-stage thematic labeling strategy: (1) it learns descriptive and discriminative keywords for different categories, and (2) uses these terms to map onion site content to a set of thematic labels. We also present empirical results of ATOL and our ongoing experimentation with it, as we have gained experience applying it to the entirety of our darkweb repository, now over 70 million indexed pages. We find that ATOL can perform site-level thematic label assignment more accurately than keywordbased schemes developed by domain experts — we expand the analyst-provided keywords using an automatic keyword discovery algorithm, and get 12% gain in accuracy by using a machine learning classification model. We also show how ATOL can discover categories on previously unlabeled onions and discuss applications of ATOL in supporting various analyses and investigations of the darkweb.