Dar, Guy
Analyzing Transformers in Embedding Space
Dar, Guy, Geva, Mor, Gupta, Ankit, Berant, Jonathan
Understanding Transformer-based models has attracted significant attention, as they lie at the heart of recent technological advances across machine learning. While most interpretability methods rely on running models over inputs, recent work has shown that a zero-pass approach, where parameters are interpreted directly without a forward/backward pass is feasible for some Transformer parameters, and for two-layer attention networks. In this work, we present a theoretical analysis where all parameters of a trained Transformer are interpreted by projecting them into the embedding space, that is, the space of vocabulary items they operate on. We derive a simple theoretical framework to support our arguments and provide ample evidence for its validity. First, an empirical analysis showing that parameters of both pretrained and fine-tuned models can be interpreted in embedding space. Second, we present two applications of our framework: (a) aligning the parameters of different models that share a vocabulary, and (b) constructing a classifier without training by ``translating'' the parameters of a fine-tuned classifier to parameters of a different model that was only pretrained. Overall, our findings open the door to interpretation methods that, at least in part, abstract away from model specifics and operate in the embedding space only.
In-context Learning and Gradient Descent Revisited
Deutch, Gilad, Magar, Nadav, Natan, Tomer Bar, Dar, Guy
In-context learning (ICL) has shown impressive results in few-shot learning tasks, yet its underlying mechanism is still not fully understood. Recent works suggest that ICL can be thought of as a gradient descent (GD) based optimization process. While promising, these results mainly focus on simplified settings of ICL and provide only a preliminary evaluation of the similarities between the two methods. In this work, we revisit the comparison between ICL and GD-based finetuning and study what properties of ICL an equivalent process must follow. We highlight a major difference in the flow of information between ICL and standard finetuning. Namely, ICL can only rely on information from lower layers at every point, while finetuning depends on loss gradients from deeper layers. We refer to this discrepancy as Layer Causality and show that a layer causal variant of the finetuning process aligns with ICL on par with vanilla finetuning and is even better in most cases across relevant metrics. To the best of our knowledge, this is the first work to discuss this discrepancy explicitly and suggest a solution that tackles this problem with minimal changes.