Goto

Collaborating Authors

 Daniel Zoran


Visual Interaction Networks: Learning a Physics Simulator from Video

Neural Information Processing Systems

From just a glance, humans can make rich predictions about the future of a wide range of physical systems. On the other hand, modern approaches from engineering, robotics, and graphics are often restricted to narrow domains or require information about the underlying state. We introduce the Visual Interaction Network, a generalpurpose model for learning the dynamics of a physical system from raw visual observations. Our model consists of a perceptual front-end based on convolutional neural networks and a dynamics predictor based on interaction networks. Through joint training, the perceptual front-end learns to parse a dynamic visual scene into a set of factored latent object representations. The dynamics predictor learns to roll these states forward in time by computing their interactions, producing a predicted physical trajectory of arbitrary length. We found that from just six input video frames the Visual Interaction Network can generate accurate future trajectories of hundreds of time steps on a wide range of physical systems. Our model can also be applied to scenes with invisible objects, inferring their future states from their effects on the visible objects, and can implicitly infer the unknown mass of objects. This work opens new opportunities for model-based decision-making and planning from raw sensory observations in complex physical environments.


Variational Memory Addressing in Generative Models

Neural Information Processing Systems

Aiming to augment generative models with external memory, we interpret the output of a memory module with stochastic addressing as a conditional mixture distribution, where a read operation corresponds to sampling a discrete memory address and retrieving the corresponding content from memory. This perspective allows us to apply variational inference to memory addressing, which enables effective training of the memory module by using the target information to guide memory lookups. Stochastic addressing is particularly well-suited for generative models as it naturally encourages multimodality which is a prominent aspect of most high-dimensional datasets. Treating the chosen address as a latent variable also allows us to quantify the amount of information gained with a memory lookup and measure the contribution of the memory module to the generative process. To illustrate the advantages of this approach we incorporate it into a variational autoencoder and apply the resulting model to the task of generative few-shot learning. The intuition behind this architecture is that the memory module can pick a relevant template from memory and the continuous part of the model can concentrate on modeling remaining variations. We demonstrate empirically that our model is able to identify and access the relevant memory contents even with hundreds of unseen Omniglot characters in memory.



Variational Memory Addressing in Generative Models

Neural Information Processing Systems

Aiming to augment generative models with external memory, we interpret the output of a memory module with stochastic addressing as a conditional mixture distribution, where a read operation corresponds to sampling a discrete memory address and retrieving the corresponding content from memory. This perspective allows us to apply variational inference to memory addressing, which enables effective training of the memory module by using the target information to guide memory lookups. Stochastic addressing is particularly well-suited for generative models as it naturally encourages multimodality which is a prominent aspect of most high-dimensional datasets. Treating the chosen address as a latent variable also allows us to quantify the amount of information gained with a memory lookup and measure the contribution of the memory module to the generative process. To illustrate the advantages of this approach we incorporate it into a variational autoencoder and apply the resulting model to the task of generative few-shot learning. The intuition behind this architecture is that the memory module can pick a relevant template from memory and the continuous part of the model can concentrate on modeling remaining variations. We demonstrate empirically that our model is able to identify and access the relevant memory contents even with hundreds of unseen Omniglot characters in memory.