Goto

Collaborating Authors

 Dang, Hy


Optimizing Decomposition for Optimal Claim Verification

arXiv.org Artificial Intelligence

Current research on the \textit{Decompose-Then-Verify} paradigm for evaluating the factuality of long-form text typically treats decomposition and verification in isolation, overlooking their interactions and potential misalignment. We find that existing decomposition policies, typically hand-crafted demonstrations, do not align well with downstream verifiers in terms of atomicity -- a novel metric quantifying information density -- leading to suboptimal verification results. We formulate finding the optimal decomposition policy for optimal verification as a bilevel optimization problem. To approximate a solution for this strongly NP-hard problem, we propose dynamic decomposition, a reinforcement learning framework that leverages verifier feedback to learn a policy for dynamically decomposing claims to verifier-preferred atomicity. Experimental results show that dynamic decomposition outperforms existing decomposition policies, improving verification confidence by 0.07 and accuracy by 0.12 (on a 0-1 scale) on average across varying verifiers, datasets, and atomcities of input claims.


Embedding Mental Health Discourse for Community Recommendation

arXiv.org Artificial Intelligence

Our paper investigates the use of discourse embedding techniques to develop a community recommendation system that focuses on mental health support groups on social media. Social media platforms provide a means for users to anonymously connect with communities that cater to their specific interests. However, with the vast number of online communities available, users may face difficulties in identifying relevant groups to address their mental health concerns. To address this challenge, we explore the integration of discourse information from various subreddit communities using embedding techniques to develop an effective recommendation system. Our approach involves the use of content-based and collaborative filtering techniques to enhance the performance of the recommendation system. Our findings indicate that the proposed approach outperforms the use of each technique separately and provides interpretability in the recommendation process.


A Quantitative Review on Language Model Efficiency Research

arXiv.org Artificial Intelligence

Language models (LMs) are being scaled and becoming powerful. Improving their efficiency is one of the core research topics in neural information processing systems. Tay et al. (2022) provided a comprehensive overview of efficient Transformers that have become an indispensable staple in the field of NLP. However, in the section of "On Evaluation", they left an open question "which fundamental efficient Transformer one should consider," answered by "still a mystery" because "many research papers select their own benchmarks." Unfortunately, there was not quantitative analysis about the performances of Transformers on any benchmarks. Moreover, state space models (SSMs) have demonstrated their abilities of modeling long-range sequences with non-attention mechanisms, which were not discussed in the prior review. This article makes a meta analysis on the results from a set of papers on efficient Transformers as well as those on SSMs. It provides a quantitative review on LM efficiency research and gives suggestions for future research.