Danelljan, Martin
Gaussian Grouping: Segment and Edit Anything in 3D Scenes
Ye, Mingqiao, Danelljan, Martin, Yu, Fisher, Ke, Lei
The recent Gaussian Splatting achieves high-quality and real-time novel-view synthesis of the 3D scenes. However, it is solely concentrated on the appearance and geometry modeling, while lacking in fine-grained object-level scene understanding. To address this issue, we propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes. We augment each Gaussian with a compact Identity Encoding, allowing the Gaussians to be grouped according to their object instance or stuff membership in the 3D scene. Instead of resorting to expensive 3D labels, we supervise the Identity Encodings during the differentiable rendering by leveraging the 2D mask predictions by SAM, along with introduced 3D spatial consistency regularization. Comparing to the implicit NeRF representation, we show that the discrete and grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency. Based on Gaussian Grouping, we further propose a local Gaussian Editing scheme, which shows efficacy in versatile scene editing applications, including 3D object removal, inpainting, colorization and scene recomposition. Our code and models will be at https://github.com/lkeab/gaussian-grouping.
How Reliable is Your Regression Model's Uncertainty Under Real-World Distribution Shifts?
Gustafsson, Fredrik K., Danelljan, Martin, Schön, Thomas B.
Many important computer vision applications are naturally formulated as regression problems. Within medical imaging, accurate regression models have the potential to automate various tasks, helping to lower costs and improve patient outcomes. Such safety-critical deployment does however require reliable estimation of model uncertainty, also under the wide variety of distribution shifts that might be encountered in practice. Motivated by this, we set out to investigate the reliability of regression uncertainty estimation methods under various real-world distribution shifts. To that end, we propose an extensive benchmark of 8 image-based regression datasets with different types of challenging distribution shifts. We then employ our benchmark to evaluate many of the most common uncertainty estimation methods, as well as two state-of-the-art uncertainty scores from the task of out-of-distribution detection. We find that while methods are well calibrated when there is no distribution shift, they all become highly overconfident on many of the benchmark datasets. This uncovers important limitations of current uncertainty estimation methods, and the proposed benchmark therefore serves as a challenge to the research community. We hope that our benchmark will spur more work on how to develop truly reliable regression uncertainty estimation methods. Code is available at https://github.com/fregu856/regression_uncertainty.
Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing
Zaech, Jan-Nico, Danelljan, Martin, Van Gool, Luc
Adiabatic quantum computing (AQC) is a promising quantum computing approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for many machine learning and computer vision tasks. Despite requiring multiple measurements from the noisy AQC, current approaches only utilize the best measurement, discarding information contained in the remaining ones. In this work, we explore the potential of using this information for probabilistic balanced k-means clustering. Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost. This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic and real data.
Strategic Preys Make Acute Predators: Enhancing Camouflaged Object Detectors by Generating Camouflaged Objects
He, Chunming, Li, Kai, Zhang, Yachao, Zhang, Yulun, Guo, Zhenhua, Li, Xiu, Danelljan, Martin, Yu, Fisher
Camouflaged object detection (COD) is the challenging task of identifying camouflaged objects visually blended into surroundings. Albeit achieving remarkable success, existing COD detectors still struggle to obtain precise results in some challenging cases. To handle this problem, we draw inspiration from the prey-vs-predator game that leads preys to develop better camouflage and predators to acquire more acute vision systems and develop algorithms from both the prey side and the predator side. On the prey side, we propose an adversarial training framework, Camouflageator, which introduces an auxiliary generator to generate more camouflaged objects that are harder for a COD method to detect. Camouflageator trains the generator and detector in an adversarial way such that the enhanced auxiliary generator helps produce a stronger detector. On the predator side, we introduce a novel COD method, called Internal Coherence and Edge Guidance (ICEG), which introduces a camouflaged feature coherence module to excavate the internal coherence of camouflaged objects, striving to obtain more complete segmentation results. Additionally, ICEG proposes a novel edge-guided separated calibration module to remove false predictions to avoid obtaining ambiguous boundaries. Extensive experiments show that ICEG outperforms existing COD detectors and Camouflageator is flexible to improve various COD detectors, including ICEG, which brings state-of-the-art COD performance.
NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions
Shahbazi, Mohamad, Ntavelis, Evangelos, Tonioni, Alessio, Collins, Edo, Paudel, Danda Pani, Danelljan, Martin, Van Gool, Luc
Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation
Cascade-DETR: Delving into High-Quality Universal Object Detection
Ye, Mingqiao, Ke, Lei, Li, Siyuan, Tai, Yu-Wing, Tang, Chi-Keung, Danelljan, Martin, Yu, Fisher
Object localization in general environments is a fundamental part of vision systems. While dominating on the COCO benchmark, recent Transformer-based detection methods are not competitive in diverse domains. Moreover, these methods still struggle to very accurately estimate the object bounding boxes in complex environments. We introduce Cascade-DETR for high-quality universal object detection. We jointly tackle the generalization to diverse domains and localization accuracy by proposing the Cascade Attention layer, which explicitly integrates object-centric information into the detection decoder by limiting the attention to the previous box prediction. To further enhance accuracy, we also revisit the scoring of queries. Instead of relying on classification scores, we predict the expected IoU of the query, leading to substantially more well-calibrated confidences. Lastly, we introduce a universal object detection benchmark, UDB10, that contains 10 datasets from diverse domains. While also advancing the state-of-the-art on COCO, Cascade-DETR substantially improves DETR-based detectors on all datasets in UDB10, even by over 10 mAP in some cases. The improvements under stringent quality requirements are even more pronounced. Our code and models will be released at https://github.com/SysCV/cascade-detr.
StyleGenes: Discrete and Efficient Latent Distributions for GANs
Ntavelis, Evangelos, Shahbazi, Mohamad, Kastanis, Iason, Timofte, Radu, Danelljan, Martin, Van Gool, Luc
We propose a discrete latent distribution for Generative Adversarial Networks (GANs). Instead of drawing latent vectors from a continuous prior, we sample from a finite set of learnable latents. However, a direct parametrization of such a distribution leads to an intractable linear increase in memory in order to ensure sufficient sample diversity. We address this key issue by taking inspiration from the encoding of information in biological organisms. Instead of learning a separate latent vector for each sample, we split the latent space into a set of genes. For each gene, we train a small bank of gene variants. Thus, by independently sampling a variant for each gene and combining them into the final latent vector, our approach can represent a vast number of unique latent samples from a compact set of learnable parameters. Interestingly, our gene-inspired latent encoding allows for new and intuitive approaches to latent-space exploration, enabling conditional sampling from our unconditionally trained model. Moreover, our approach preserves state-of-the-art photo-realism while achieving better disentanglement than the widely-used StyleMapping network.
Mask-Free Video Instance Segmentation
Ke, Lei, Danelljan, Martin, Ding, Henghui, Tai, Yu-Wing, Tang, Chi-Keung, Yu, Fisher
The recent advancement in Video Instance Segmentation (VIS) has largely been driven by the use of deeper and increasingly data-hungry transformer-based models. However, video masks are tedious and expensive to annotate, limiting the scale and diversity of existing VIS datasets. In this work, we aim to remove the mask-annotation requirement. We propose MaskFreeVIS, achieving highly competitive VIS performance, while only using bounding box annotations for the object state. We leverage the rich temporal mask consistency constraints in videos by introducing the Temporal KNN-patch Loss (TK-Loss), providing strong mask supervision without any labels. Our TK-Loss finds one-to-many matches across frames, through an efficient patch-matching step followed by a K-nearest neighbor selection. A consistency loss is then enforced on the found matches. Our mask-free objective is simple to implement, has no trainable parameters, is computationally efficient, yet outperforms baselines employing, e.g., state-of-the-art optical flow to enforce temporal mask consistency. We validate MaskFreeVIS on the YouTube-VIS 2019/2021, OVIS and BDD100K MOTS benchmarks. The results clearly demonstrate the efficacy of our method by drastically narrowing the gap between fully and weakly-supervised VIS performance. Our code and trained models are available at https://github.com/SysCV/MaskFreeVis.
ManiFlow: Implicitly Representing Manifolds with Normalizing Flows
Postels, Janis, Danelljan, Martin, Van Gool, Luc, Tombari, Federico
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions. However, their invertibility constraint imposes limitations on data distributions that reside on lower dimensional manifolds embedded in higher dimensional space. Practically, this shortcoming is often bypassed by adding noise to the data which impacts the quality of the generated samples. In contrast to prior work, we approach this problem by generating samples from the original data distribution given full knowledge about the perturbed distribution and the noise model. To this end, we establish that NFs trained on perturbed data implicitly represent the manifold in regions of maximum likelihood. Then, we propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution. Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself, to apply Poisson surface reconstruction to refine generated point sets.
Adiabatic Quantum Computing for Multi Object Tracking
Zaech, Jan-Nico, Liniger, Alexander, Danelljan, Martin, Dai, Dengxin, Van Gool, Luc
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time. The association step naturally leads to discrete optimization problems. As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware. Adiabatic quantum computing (AQC) offers a solution for this, as it has the potential to provide a considerable speedup on a range of NP-hard optimization problems in the near future. However, current MOT formulations are unsuitable for quantum computing due to their scaling properties. In this work, we therefore propose the first MOT formulation designed to be solved with AQC. We employ an Ising model that represents the quantum mechanical system implemented on the AQC. We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers. Finally, we demonstrate that our MOT problem is already solvable on the current generation of real quantum computers for small examples, and analyze the properties of the measured solutions.