Goto

Collaborating Authors

 Damien Scieur



Regularized Nonlinear Acceleration

Neural Information Processing Systems

We describe a convergence acceleration technique for generic optimization problems. Our scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization method. The weights in this average are computed via a simple and small linear system, whose solution can be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution on the fly, while the original optimization method is running. Numerical experiments are detailed on classical classification problems.


Integration Methods and Optimization Algorithms

Neural Information Processing Systems

We show that accelerated optimization methods can be seen as particular instances of multi-step integration schemes from numerical analysis, applied to the gradient flow equation. Compared with recent advances in this vein, the differential equation considered here is the basic gradient flow, and we derive a class of multi-step schemes which includes accelerated algorithms, using classical conditions from numerical analysis. Multi-step schemes integrate the differential equation using larger step sizes, which intuitively explains the acceleration phenomenon.