Damiani, Ernesto
HH4AI: A methodological Framework for AI Human Rights impact assessment under the EUAI ACT
Ceravolo, Paolo, Damiani, Ernesto, D'Amico, Maria Elisa, Erb, Bianca de Teffe, Favaro, Simone, Fiano, Nannerel, Gambatesa, Paolo, La Porta, Simone, Maghool, Samira, Mauri, Lara, Panigada, Niccolo, Vaquer, Lorenzo Maria Ratto, Tamborini, Marta A.
This paper introduces the HH4AI Methodology, a structured approach to assessing the impact of AI systems on human rights, focusing on compliance with the EU AI Act and addressing technical, ethical, and regulatory challenges. The paper highlights AIs transformative nature, driven by autonomy, data, and goal-oriented design, and how the EU AI Act promotes transparency, accountability, and safety. A key challenge is defining and assessing "high-risk" AI systems across industries, complicated by the lack of universally accepted standards and AIs rapid evolution. To address these challenges, the paper explores the relevance of ISO/IEC and IEEE standards, focusing on risk management, data quality, bias mitigation, and governance. It proposes a Fundamental Rights Impact Assessment (FRIA) methodology, a gate-based framework designed to isolate and assess risks through phases including an AI system overview, a human rights checklist, an impact assessment, and a final output phase. A filtering mechanism tailors the assessment to the system's characteristics, targeting areas like accountability, AI literacy, data governance, and transparency. The paper illustrates the FRIA methodology through a fictional case study of an automated healthcare triage service. The structured approach enables systematic filtering, comprehensive risk assessment, and mitigation planning, effectively prioritizing critical risks and providing clear remediation strategies. This promotes better alignment with human rights principles and enhances regulatory compliance.
Leonardo vindicated: Pythagorean trees for minimal reconstruction of the natural branching structures
Ruta, Dymitr, Mio, Corrado, Damiani, Ernesto
Trees continue to fascinate with their natural beauty and as engineering masterpieces optimal with respect to several independent criteria. Pythagorean tree is a well-known fractal design that realistically mimics the natural tree branching structures. We study various types of Pythagorean-like fractal trees with different shapes of the base, branching angles and relaxed scales in an attempt to identify and explain which variants are the closest match to the branching structures commonly observed in the natural world. Pursuing simultaneously the realism and minimalism of the fractal tree model, we have developed a flexibly parameterised and fast algorithm to grow and visually examine deep Pythagorean-inspired fractal trees with the capability to orderly over- or underestimate the Leonardo da Vinci's tree branching rule as well as control various imbalances and branching angles. We tested the realism of the generated fractal tree images by means of the classification accuracy of detecting natural tree with the transfer-trained deep Convolutional Neural Networks (CNNs). Having empirically established the parameters of the fractal trees that maximize the CNN's natural tree class classification accuracy we have translated them back to the scales and angles of branches and came to the interesting conclusions that support the da Vinci branching rule and golden ratio based scaling for both the shape of the branch and imbalance between the child branches, and claim the flexibly parameterized fractal trees can be used to generate artificial examples to train robust detectors of different species of trees.
A Visualized Malware Detection Framework with CNN and Conditional GAN
Wang, Fang, Hamadi, Hussam Al, Damiani, Ernesto
Malware visualization analysis incorporating with Machine Learning (ML) has been proven to be a promising solution for improving security defenses on different platforms. In this work, we propose an integrated framework for addressing common problems experienced by ML utilizers in developing malware detection systems. Namely, a pictorial presentation system with extensions is designed to preserve the identities of benign/malign samples by encoding each variable into binary digits and mapping them into black and white pixels. A conditional Generative Adversarial Network based model is adopted to produce synthetic images and mitigate issues of imbalance classes. Detection models architected by Convolutional Neural Networks are for validating performances while training on datasets with and without artifactual samples. Result demonstrates accuracy rates of 98.51% and 97.26% for these two training scenarios.
A Quantization-based Technique for Privacy Preserving Distributed Learning
Colombo, Maurizio, Asal, Rasool, Damiani, Ernesto, AlQassem, Lamees Mahmoud, Almemari, Al Anoud, Alhammadi, Yousof
The massive deployment of Machine Learning (ML) models raises serious concerns about data protection. Privacy-enhancing technologies (PETs) offer a promising first step, but hard challenges persist in achieving confidentiality and differential privacy in distributed learning. In this paper, we describe a novel, regulation-compliant data protection technique for the distributed training of ML models, applicable throughout the ML life cycle regardless of the underlying ML architecture. Designed from the data owner's perspective, our method protects both training data and ML model parameters by employing a protocol based on a quantized multi-hash data representation Hash-Comb combined with randomization. The hyper-parameters of our scheme can be shared using standard Secure Multi-Party computation protocols. Our experimental results demonstrate the robustness and accuracy-preserving properties of our approach.
Managing ML-Based Application Non-Functional Behavior: A Multi-Model Approach
Anisetti, Marco, Ardagna, Claudio A., Bena, Nicola, Damiani, Ernesto, Panero, Paolo G.
Modern applications are increasingly driven by Machine Learning (ML) models whose non-deterministic behavior is affecting the entire application life cycle from design to operation. The pervasive adoption of ML is urgently calling for approaches that guarantee a stable non-functional behavior of ML-based applications over time and across model changes. To this aim, non-functional properties of ML models, such as privacy, confidentiality, fairness, and explainability, must be monitored, verified, and maintained. This need is even more pressing when modern applications operate in the edge-cloud continuum, increasing their complexity and dynamicity. Existing approaches mostly focus on i) implementing classifier selection solutions according to the functional behavior of ML models, ii) finding new algorithmic solutions to this need, such as continuous re-training. In this paper, we propose a multi-model approach built on dynamic classifier selection, where multiple ML models showing similar non-functional properties are made available to the application and one model is selected over time according to (dynamic and unpredictable) contextual changes. Our solution goes beyond the state of the art by providing an architectural and methodological approach that continuously guarantees a stable non-functional behavior of ML-based applications, is applicable to different ML models, and is driven by non-functional properties assessed on the models themselves. It consists of a two-step process working during application operation, where model assessment verifies non-functional properties of ML models trained and selected at development time, and model substitution guarantees a continuous and stable support of non-functional properties. We experimentally evaluate our solution in a real-world scenario focusing on non-functional property fairness.
Rethinking Certification for Trustworthy Machine Learning-Based Applications
Anisetti, Marco, Ardagna, Claudio A., Bena, Nicola, Damiani, Ernesto
Machine Learning (ML) is increasingly used to implement advanced applications with non-deterministic behavior, which operate on the cloud-edge continuum. The pervasive adoption of ML is urgently calling for assurance solutions assessing applications non-functional properties (e.g., fairness, robustness, privacy) with the aim to improve their trustworthiness. Certification has been clearly identified by policymakers, regulators, and industrial stakeholders as the preferred assurance technique to address this pressing need. Unfortunately, existing certification schemes are not immediately applicable to non-deterministic applications built on ML models. This article analyzes the challenges and deficiencies of current certification schemes, discusses open research issues, and proposes a first certification scheme for ML-based applications.
Reputation-Based Federated Learning Defense to Mitigate Threats in EEG Signal Classification
Zhang, Zhibo, Li, Pengfei, Hammadi, Ahmed Y. Al, Guo, Fusen, Damiani, Ernesto, Yeun, Chan Yeob
This paper presents a reputation-based threat mitigation framework that defends potential security threats in electroencephalogram (EEG) signal classification during model aggregation of Federated Learning. While EEG signal analysis has attracted attention because of the emergence of brain-computer interface (BCI) technology, it is difficult to create efficient learning models for EEG analysis because of the distributed nature of EEG data and related privacy and security concerns. To address these challenges, the proposed defending framework leverages the Federated Learning paradigm to preserve privacy by collaborative model training with localized data from dispersed sources and introduces a reputation-based mechanism to mitigate the influence of data poisoning attacks and identify compromised participants. To assess the efficiency of the proposed reputation-based federated learning defense framework, data poisoning attacks based on the risk level of training data derived by Explainable Artificial Intelligence (XAI) techniques are conducted on both publicly available EEG signal datasets and the self-established EEG signal dataset. Experimental results on the poisoned datasets show that the proposed defense methodology performs well in EEG signal classification while reducing the risks associated with security threats.
On the Robustness of Random Forest Against Untargeted Data Poisoning: An Ensemble-Based Approach
Anisetti, Marco, Ardagna, Claudio A., Balestrucci, Alessandro, Bena, Nicola, Damiani, Ernesto, Yeun, Chan Yeob
Machine learning is becoming ubiquitous. From finance to medicine, machine learning models are boosting decision-making processes and even outperforming humans in some tasks. This huge progress in terms of prediction quality does not however find a counterpart in the security of such models and corresponding predictions, where perturbations of fractions of the training set (poisoning) can seriously undermine the model accuracy. Research on poisoning attacks and defenses received increasing attention in the last decade, leading to several promising solutions aiming to increase the robustness of machine learning. Among them, ensemble-based defenses, where different models are trained on portions of the training set and their predictions are then aggregated, provide strong theoretical guarantees at the price of a linear overhead. Surprisingly, ensemble-based defenses, which do not pose any restrictions on the base model, have not been applied to increase the robustness of random forest models. The work in this paper aims to fill in this gap by designing and implementing a novel hash-based ensemble approach that protects random forest against untargeted, random poisoning attacks. An extensive experimental evaluation measures the performance of our approach against a variety of attacks, as well as its sustainability in terms of resource consumption and performance, and compares it with a traditional monolithic model based on random forest. A final discussion presents our main findings and compares our approach with existing poisoning defenses targeting random forests.
Tailoring Machine Learning for Process Mining
Ceravolo, Paolo, Junior, Sylvio Barbon, Damiani, Ernesto, van der Aalst, Wil
Process Mining (PM) is a consolidated discipline grounded on data mining and business process management. The exploitation of traditional PM tasks (discovery, conformance checking, and enhancement) is today a reality in many organizations [1, 2]. In the last decade, a wave of new results in artificial intelligence has triggered the interest of the PM research community in using supervised or unsupervised Machine Learning (ML) techniques for gaining insight into business processes and providing advice on how to improve their inefficiencies. In today's practice, ML models are routinely integrated into PM data pipelines [3] to carry out tasks like data transformation, noise reduction, anomaly detection, classification, and prediction. For example, ML is playing a key role in the interface between PM and sensor platforms. Advances in sensing technologies have made it possible to deploy distributed monitoring platforms capable of detecting fine-grained events. The granularity gap between these events and the activities considered by classic PM analysis has often been bridged using ML models [4, 5] that compute virtual activity logs, a problem which is also known as log lifting [6].
A Late Multi-Modal Fusion Model for Detecting Hybrid Spam E-mail
Zhang, Zhibo, Damiani, Ernesto, Hamadi, Hussam Al, Yeun, Chan Yeob, Taher, Fatma
In recent years, spammers are now trying to obfuscate their intents by introducing hybrid spam e-mail combining both image and text parts, which is more challenging to detect in comparison to e-mails containing text or image only. The motivation behind this research is to design an effective approach filtering out hybrid spam e-mails to avoid situations where traditional text-based or image-baesd only filters fail to detect hybrid spam e-mails. To the best of our knowledge, a few studies have been conducted with the goal of detecting hybrid spam e-mails. Ordinarily, Optical Character Recognition (OCR) technology is used to eliminate the image parts of spam by transforming images into text. However, the research questions are that although OCR scanning is a very successful technique in processing text-and-image hybrid spam, it is not an effective solution for dealing with huge quantities due to the CPU power required and the execution time it takes to scan e-mail files. And the OCR techniques are not always reliable in the transformation processes. To address such problems, we propose new late multi-modal fusion training frameworks for a text-and-image hybrid spam e-mail filtering system compared to the classical early fusion detection frameworks based on the OCR method. Convolutional Neural Network (CNN) and Continuous Bag of Words were implemented to extract features from image and text parts of hybrid spam respectively, whereas generated features were fed to sigmoid layer and Machine Learning based classifiers including Random Forest (RF), Decision Tree (DT), Naive Bayes (NB) and Support Vector Machine (SVM) to determine the e-mail ham or spam.