Goto

Collaborating Authors

 Damarla, Seshu Kumar


Machine learning for industrial sensing and control: A survey and practical perspective

arXiv.org Artificial Intelligence

With the rise of deep learning, there has been renewed interest within the process industries to utilize data on large-scale nonlinear sensing and control problems. We identify key statistical and machine learning techniques that have seen practical success in the process industries. To do so, we start with hybrid modeling to provide a methodological framework underlying core application areas: soft sensing, process optimization, and control. Soft sensing contains a wealth of industrial applications of statistical and machine learning methods. We quantitatively identify research trends, allowing insight into the most successful techniques in practice. We consider two distinct flavors for data-driven optimization and control: hybrid modeling in conjunction with mathematical programming techniques and reinforcement learning. Throughout these application areas, we discuss their respective industrial requirements and challenges. A common challenge is the interpretability and efficiency of purely data-driven methods. This suggests a need to carefully balance deep learning techniques with domain knowledge. As a result, we highlight ways prior knowledge may be integrated into industrial machine learning applications. The treatment of methods, problems, and applications presented here is poised to inform and inspire practitioners and researchers to develop impactful data-driven sensing, optimization, and control solutions in the process industries.


Estimation of minimum miscibility pressure (MMP) in impure/pure N2 based enhanced oil recovery process: A comparative study of statistical and machine learning algorithms

arXiv.org Artificial Intelligence

Minimum miscibility pressure (MMP) prediction plays an important role in design and operation of nitrogen based enhanced oil recovery processes. In this work, a comparative study of statistical and machine learning methods used for MMP estimation is carried out. Most of the predictive models developed in this study exhibited superior performance over correlation and predictive models reported in literature.