Dalmau, Victor
Conjunctive Queries: Unique Characterizations and Exact Learnability
Cate, Balder ten, Dalmau, Victor
We answer the question which conjunctive queries are uniquely characterized by polynomially many positive and negative examples, and how to construct such examples efficiently. As a consequence, we obtain a new efficient exact learning algorithm for a class of conjunctive queries. At the core of our contributions lie two new polynomial-time algorithms for constructing frontiers in the homomorphism lattice of finite structures. We also discuss implications for the unique characterizability and learnability of schema mappings and of description logic concepts.
Arc Consistency and Friends
Chen, Hubie, Dalmau, Victor, Grußien, Berit
A natural and established way to restrict the constraint satisfaction problem is to fix the relations that can be used to pose constraints; such a family of relations is called a constraint language. In this article, we study arc consistency, a heavily investigated inference method, and three extensions thereof from the perspective of constraint languages. We conduct a comparison of the studied methods on the basis of which constraint languages they solve, and we present new polynomial-time tractability results for singleton arc consistency, the most powerful method studied.