Dale, Michael
Experiments with Neural Networks for Real Time Implementation of Control
Campbell, Peter K., Dale, Michael, Ferrá, Herman L., Kowalczyk, Adam
This paper describes a neural network based controller for allocating capacity in a telecommunications network. This system was proposed in order to overcome a "real time" response constraint. Two basic architectures are evaluated: 1) a feedforward network-heuristic and; 2) a feedforward network-recurrent network. These architectures are compared against a linear programming (LP) optimiser as a benchmark. This LP optimiser was also used as a teacher to label the data samples for the feedforward neural network training algorithm. It is found that the systems are able to provide a traffic throughput of 99% and 95%, respectively, of the throughput obtained by the linear programming solution. Once trained, the neural network based solutions are found in a fraction of the time required by the LP optimiser.
Experiments with Neural Networks for Real Time Implementation of Control
Campbell, Peter K., Dale, Michael, Ferrá, Herman L., Kowalczyk, Adam
This paper describes a neural network based controller for allocating capacity in a telecommunications network. This system was proposed in order to overcome a "real time" response constraint. Two basic architectures are evaluated: 1) a feedforward network-heuristic and; 2) a feedforward network-recurrent network. These architectures are compared against a linear programming (LP) optimiser as a benchmark. This LP optimiser was also used as a teacher to label the data samples for the feedforward neural network training algorithm. It is found that the systems are able to provide a traffic throughput of 99% and 95%, respectively, of the throughput obtained by the linear programming solution. Once trained, the neural network based solutions are found in a fraction of the time required by the LP optimiser.