Goto

Collaborating Authors

 Dai, Yu-Hong


Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems

arXiv.org Artificial Intelligence

In this paper, we consider a class of nonconvex-nonconcave minimax problems, i.e., NC-PL minimax problems, whose objective functions satisfy the Polyak-\L ojasiewicz (PL) condition with respect to the inner variable. We propose a zeroth-order alternating gradient descent ascent (ZO-AGDA) algorithm and a zeroth-order variance reduced alternating gradient descent ascent (ZO-VRAGDA) algorithm for solving NC-PL minimax problem under the deterministic and the stochastic setting, respectively. The total number of function value queries to obtain an $\epsilon$-stationary point of ZO-AGDA and ZO-VRAGDA algorithm for solving NC-PL minimax problem is upper bounded by $\mathcal{O}(\varepsilon^{-2})$ and $\mathcal{O}(\varepsilon^{-3})$, respectively. To the best of our knowledge, they are the first two zeroth-order algorithms with the iteration complexity gurantee for solving NC-PL minimax problems.


Primal Dual Alternating Proximal Gradient Algorithms for Nonsmooth Nonconvex Minimax Problems with Coupled Linear Constraints

arXiv.org Artificial Intelligence

Nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose a primal dual alternating proximal gradient (PDAPG) algorithm and a primal dual proximal gradient (PDPG-L) algorithm for solving nonsmooth nonconvex-(strongly) concave and nonconvex-linear minimax problems with coupled linear constraints, respectively. The iteration complexity of the two algorithms are proved to be $\mathcal{O}\left( \varepsilon ^{-2} \right)$ (resp. $\mathcal{O}\left( \varepsilon ^{-4} \right)$) under nonconvex-strongly concave (resp. nonconvex-concave) setting and $\mathcal{O}\left( \varepsilon ^{-3} \right)$ under nonconvex-linear setting to reach an $\varepsilon$-stationary point, respectively. To our knowledge, they are the first two algorithms with iteration complexity guarantee for solving the nonconvex minimax problems with coupled linear constraints.


Barzilai-Borwein Step Size for Stochastic Gradient Descent

Neural Information Processing Systems

One of the major issues in stochastic gradient descent (SGD) methods is how to choose an appropriate step size while running the algorithm. Since the traditional line search technique does not apply for stochastic optimization methods, the common practice in SGD is either to use a diminishing step size, or to tune a step size by hand, which can be time consuming in practice. In this paper, we propose to use the Barzilai-Borwein (BB) method to automatically compute step sizes for SGD and its variant: stochastic variance reduced gradient (SVRG) method, which leads to two algorithms: SGD-BB and SVRG-BB. We prove that SVRG-BB converges linearly for strongly convex objective functions. As a by-product, we prove the linear convergence result of SVRG with Option I proposed in [10], whose convergence result has been missing in the literature. Numerical experiments on standard data sets show that the performance of SGD-BB and SVRG-BB is comparable to and sometimes even better than SGD and SVRG with best-tuned step sizes, and is superior to some advanced SGD variants.


Barzilai-Borwein Step Size for Stochastic Gradient Descent

arXiv.org Machine Learning

One of the major issues in stochastic gradient descent (SGD) methods is how to choose an appropriate step size while running the algorithm. Since the traditional line search technique does not apply for stochastic optimization algorithms, the common practice in SGD is either to use a diminishing step size, or to tune a fixed step size by hand, which can be time consuming in practice. In this paper, we propose to use the Barzilai-Borwein (BB) method to automatically compute step sizes for SGD and its variant: stochastic variance reduced gradient (SVRG) method, which leads to two algorithms: SGD-BB and SVRG-BB. We prove that SVRG-BB converges linearly for strongly convex objective functions. As a by-product, we prove the linear convergence result of SVRG with Option I proposed in [10], whose convergence result is missing in the literature. Numerical experiments on standard data sets show that the performance of SGD-BB and SVRG-BB is comparable to and sometimes even better than SGD and SVRG with best-tuned step sizes, and is superior to some advanced SGD variants.