Goto

Collaborating Authors

 Dai, Suyang


Meta-Reflection: A Feedback-Free Reflection Learning Framework

arXiv.org Artificial Intelligence

Despite the remarkable capabilities of large language models (LLMs) in natural language understanding and reasoning, they often display undesirable behaviors, such as generating hallucinations and unfaithful reasoning. A prevalent strategy to mitigate these issues is the use of reflection, which refines responses through an iterative process. However, while promising, reflection heavily relies on high-quality external feedback and requires iterative multi-agent inference processes, thus hindering its practical application. In this paper, we propose Meta-Reflection, a novel feedback-free reflection mechanism that necessitates only a single inference pass without external feedback. Motivated by the human ability to remember and retrieve reflections from past experiences when encountering similar problems, Meta-Reflection integrates reflective insights into a codebook, allowing the historical insights to be stored, retrieved, and used to guide LLMs in problem-solving. To thoroughly investigate and evaluate the practicality of Meta-Reflection in real-world scenarios, we introduce an industrial e-commerce benchmark named E-commerce Customer Intent Detection (ECID). Extensive experiments conducted on both public datasets and the ECID benchmark highlight the effectiveness and efficiency of our proposed approach.


HAXMLNet: Hierarchical Attention Network for Extreme Multi-Label Text Classification

arXiv.org Machine Learning

Extreme multi-label text classification (XMTC) addresses the problem of tagging each text with the most relevant labels from an extreme-scale label set. Traditional methods use bag-of-words (BOW) representations without context information as their features. The state-ot-the-art deep learning-based method, AttentionXML, which uses a recurrent neural network (RNN) and the multi-label attention, can hardly deal with extreme-scale (hundreds of thousands labels) problem. To address this, we propose our HAXMLNet, which uses an efficient and effective hierarchical structure with the multi-label attention. Experimental results show that HAXMLNet reaches a competitive performance with other state-of-the-art methods.