Goto

Collaborating Authors

 Dai, Pingyang


Prompt Decoupling for Text-to-Image Person Re-identification

arXiv.org Artificial Intelligence

Text-to-image person re-identification (TIReID) aims to retrieve the target person from an image gallery via a textual description query. Recently, pre-trained vision-language models like CLIP have attracted significant attention and have been widely utilized for this task due to their robust capacity for semantic concept learning and rich multi-modal knowledge. However, recent CLIP-based TIReID methods commonly rely on direct fine-tuning of the entire network to adapt the CLIP model for the TIReID task. Although these methods show competitive performance on this topic, they are suboptimal as they necessitate simultaneous domain adaptation and task adaptation. To address this issue, we attempt to decouple these two processes during the training stage. Specifically, we introduce the prompt tuning strategy to enable domain adaptation and propose a two-stage training approach to disentangle domain adaptation from task adaptation. In the first stage, we freeze the two encoders from CLIP and solely focus on optimizing the prompts to alleviate domain gap between the original training data of CLIP and downstream tasks. In the second stage, we maintain the fixed prompts and fine-tune the CLIP model to prioritize capturing fine-grained information, which is more suitable for TIReID task. Finally, we evaluate the effectiveness of our method on three widely used datasets. Compared to the directly fine-tuned approach, our method achieves significant improvements.


Less is More: Learning Reference Knowledge Using No-Reference Image Quality Assessment

arXiv.org Artificial Intelligence

Image Quality Assessment (IQA) with reference images have achieved great success by imitating the human vision system, in which the image quality is effectively assessed by comparing the query image with its pristine reference image. However, for the images in the wild, it is quite difficult to access accurate reference images. We argue that it is possible to learn reference knowledge under the No-Reference Image Quality Assessment (NR-IQA) setting, which is effective and efficient empirically. Concretely, by innovatively introducing a novel feature distillation method in IQA, we propose a new framework to learn comparative knowledge from non-aligned reference images. And then, to achieve fast convergence and avoid overfitting, we further propose an inductive bias regularization. Such a framework not only solves the congenital defects of NR-IQA but also improves the feature extraction framework, enabling it to express more abundant quality information. Surprisingly, our method utilizes less input while obtaining a more significant improvement compared to the teacher models. Extensive experiments on eight standard NR-IQA datasets demonstrate the superior performance to the state-of-the-art NR-IQA methods, i.e., achieving the PLCC values of 0.917 (vs. 0.884 in LIVEC) and 0.686 (vs. 0.661 in LIVEFB).