Dai, Mengyu
Text-to-Video: a Two-stage Framework for Zero-shot Identity-agnostic Talking-head Generation
Wang, Zhichao, Dai, Mengyu, Lundgaard, Keld
The advent of ChatGPT has introduced innovative methods for information gathering and analysis. However, the information provided by ChatGPT is limited to text, and the visualization of this information remains constrained. Previous research has explored zero-shot text-to-video (TTV) approaches to transform text into videos. However, these methods lacked control over the identity of the generated audio, i.e., not identity-agnostic, hindering their effectiveness. To address this limitation, we propose a novel two-stage framework for person-agnostic video cloning, specifically focusing on TTV generation. In the first stage, we leverage pretrained zero-shot models to achieve text-to-speech (TTS) conversion. In the second stage, an audio-driven talking head generation method is employed to produce compelling videos privided the audio generated in the first stage. This paper presents a comparative analysis of different TTS and audio-driven talking head generation methods, identifying the most promising approach for future research and development. Some audio and videos samples can be found in the following link: https://github.com/ZhichaoWang970201/Text-to-Video/tree/main.
AWGAN: Empowering High-Dimensional Discriminator Output for Generative Adversarial Networks
Dai, Mengyu, Hang, Haibin, Srivastava, Anuj
Empirically multidimensional discriminator (critic) output can be advantageous, while a solid explanation for it has not been discussed. In this paper, (i) we rigorously prove that high-dimensional critic output has advantage on distinguishing real and fake distributions; (ii) we also introduce an square-root velocity transformation (SRVT) block which further magnifies this advantage. The proof is based on our proposed maximal p-centrality discrepancy which is bounded above by p-Wasserstein distance and perfectly fits the Wasserstein GAN framework with high-dimensional critic output n. We have also showed when n = 1, the proposed discrepancy is equivalent to 1-Wasserstein distance. The SRVT block is applied to break the symmetric structure of high-dimensional critic output and improve the generalization capability of the discriminator network. In terms of implementation, the proposed framework does not require additional hyper-parameter tuning, which largely facilitates its usage. Experiments on image generation tasks show performance improvement on benchmark datasets.