Dai, Dongyang
learning discriminative features from spectrograms using center loss for speech emotion recognition
Dai, Dongyang, Wu, Zhiyong, Li, Runnan, Wu, Xixin, Jia, Jia, Meng, Helen
Identifying the emotional state from speech is essential for the natural interaction of the machine with the speaker. However, extracting effective features for emotion recognition is difficult, as emotions are ambiguous. We propose a novel approach to learn discriminative features from variable length spectrograms for emotion recognition by cooperating softmax cross-entropy loss and center loss together. The softmax cross-entropy loss enables features from different emotion categories separable, and center loss efficiently pulls the features belonging to the same emotion category to their center. By combining the two losses together, the discriminative power will be highly enhanced, which leads to network learning more effective features for emotion recognition. As demonstrated by the experimental results, after introducing center loss, both the unweighted accuracy and weighted accuracy are improved by over 3\% on Mel-spectrogram input, and more than 4\% on Short Time Fourier Transform spectrogram input.
Disambiguation of Chinese Polyphones in an End-to-End Framework with Semantic Features Extracted by Pre-trained BERT
Dai, Dongyang, Wu, Zhiyong, Kang, Shiyin, Wu, Xixin, Jia, Jia, Su, Dan, Yu, Dong, Meng, Helen
Grapheme-to-phoneme (G2P) conversion serves as an essential component in Chinese Mandarin text-to-speech (TTS) system, where polyphone disambiguation is the core issue. In this paper, we propose an end-to-end framework to predict the pronunciation of a polyphonic character, which accepts sentence containing polyphonic character as input in the form of Chinese character sequence without the necessity of any preprocessing. The proposed method consists of a pre-trained bidirectional encoder representations from Transformers (BERT) model and a neural network (NN) based classifier. The pre-trained BERT model extracts semantic features from a raw Chinese character sequence and the NN based classifier predicts the polyphonic character's pronunciation according to BERT output. In out experiments, we implemented three classifiers, a fully-connected network based classifier, a long short-term memory (LSTM) network based classifier and a Transformer block based classifier. The experimental results compared with the baseline approach based on LSTM demonstrate that, the pre-trained model extracts effective semantic features, which greatly enhances the performance of polyphone disambiguation. In addition, we also explored the impact of contextual information on polyphone disambiguation.
RFWave: Multi-band Rectified Flow for Audio Waveform Reconstruction
Liu, Peng, Dai, Dongyang, Wu, Zhiyong
Recent advancements in generative modeling have significantly enhanced the reconstruction of audio waveforms from various representations. While diffusion models are adept at this task, they are hindered by latency issues due to their operation at the individual sample point level and the need for numerous sampling steps. In this study, we introduce RFWave, a cutting-edge multi-band Rectified Flow approach designed to reconstruct high-fidelity audio waveforms from Mel-spectrograms or discrete tokens. RFWave uniquely generates complex spectrograms and operates at the frame level, processing all subbands simultaneously to boost efficiency. Leveraging Rectified Flow, which targets a flat transport trajectory, RFWave achieves reconstruction with just 10 sampling steps. Our empirical evaluations show that RFWave not only provides outstanding reconstruction quality but also offers vastly superior computational efficiency, enabling audio generation at speeds up to 97 times faster than real-time on a GPU.
Unsupervised Cross-Lingual Speech Emotion Recognition Using DomainAdversarial Neural Network
Cai, Xiong, Wu, Zhiyong, Zhong, Kuo, Su, Bin, Dai, Dongyang, Meng, Helen
By using deep learning approaches, Speech Emotion Recog-nition (SER) on a single domain has achieved many excellentresults. However, cross-domain SER is still a challenging taskdue to the distribution shift between source and target domains.In this work, we propose a Domain Adversarial Neural Net-work (DANN) based approach to mitigate this distribution shiftproblem for cross-lingual SER. Specifically, we add a languageclassifier and gradient reversal layer after the feature extractor toforce the learned representation both language-independent andemotion-meaningful. Our method is unsupervised, i. e., labelson target language are not required, which makes it easier to ap-ply our method to other languages. Experimental results showthe proposed method provides an average absolute improve-ment of 3.91% over the baseline system for arousal and valenceclassification task. Furthermore, we find that batch normaliza-tion is beneficial to the performance gain of DANN. Thereforewe also explore the effect of different ways of data combinationfor batch normalization.