Plotting

 Dai, Angela


AI Agents in Engineering Design: A Multi-Agent Framework for Aesthetic and Aerodynamic Car Design

arXiv.org Artificial Intelligence

We introduce the concept of "Design Agents" for engineering applications, particularly focusing on the automotive design process, while emphasizing that our approach can be readily extended to other engineering and design domains. Our framework integrates AI-driven design agents into the traditional engineering workflow, demonstrating how these specialized computational agents interact seamlessly with engineers and designers to augment creativity, enhance efficiency, and significantly accelerate the overall design cycle. By automating and streamlining tasks traditionally performed manually, such as conceptual sketching, styling enhancements, 3D shape retrieval and generative modeling, computational fluid dynamics (CFD) meshing, and aerodynamic simulations, our approach reduces certain aspects of the conventional workflow from weeks and days down to minutes. These agents leverage state-of-the-art vision-language models (VLMs), large language models (LLMs), and geometric deep learning techniques, providing rapid iteration and comprehensive design exploration capabilities. We ground our methodology in industry-standard benchmarks, encompassing a wide variety of conventional automotive designs, and utilize high-fidelity aerodynamic simulations to ensure practical and applicable outcomes. Furthermore, we present design agents that can swiftly and accurately predict simulation outcomes, empowering engineers and designers to engage in more informed design optimization and exploration. This research underscores the transformative potential of integrating advanced generative AI techniques into complex engineering tasks, paving the way for broader adoption and innovation across multiple engineering disciplines.


TripNet: Learning Large-scale High-fidelity 3D Car Aerodynamics with Triplane Networks

arXiv.org Artificial Intelligence

Computational Fluid Dynamics (CFD) simulations are essential in product design, providing insights into fluid behavior around complex geometries in aerospace and automotive applications. However, high-fidelity CFD simulations are computationally expensive, making rapid design iterations challenging. To address this, we propose TripNet, Triplane CFD Network, a machine learning-based framework leveraging triplane representations to predict the outcomes of large-scale, high-fidelity CFD simulations with significantly reduced computation cost. Our method encodes 3D geometry into compact yet information-rich triplane features, maintaining full geometry fidelity and enabling accurate aerodynamic predictions. Unlike graph- and point cloud-based models, which are inherently discrete and provide solutions only at the mesh nodes, TripNet allows the solution to be queried at any point in the 3D space. Validated on high-fidelity DrivAerNet and DrivAerNet++ car aerodynamics datasets, TripNet achieves state-of-the-art performance in drag coefficient prediction, surface field estimation, and full 3D flow field simulations of industry-standard car designs. By utilizing a shared triplane backbone across multiple tasks, our approach offers a scalable, accurate, and efficient alternative to traditional CFD solvers.


Use of Winsome Robots for Understanding Human Feedback (UWU)

arXiv.org Artificial Intelligence

As social robots become more common, many have adopted cute aesthetics aiming to enhance user comfort and acceptance. However, the effect of this aesthetic choice on human feedback in reinforcement learning scenarios remains unclear. Previous research has shown that humans tend to give more positive than negative feedback, which can cause failure to reach optimal robot behavior. We hypothesize that this positive bias may be exacerbated by the robot's level of perceived cuteness. To investigate, we conducted a user study where participants critique a robot's trajectories while it performs a task. We then analyzed the impact of the robot's aesthetic cuteness on the type of participant feedback. Our results suggest that there is a shift in the ratio of positive to negative feedback when perceived cuteness changes. In light of this, we experiment with a stochastic version of TAMER which adapts based on the user's level of positive feedback bias to mitigate these effects.


DNF: Unconditional 4D Generation with Dictionary-based Neural Fields

arXiv.org Artificial Intelligence

While remarkable success has been achieved through diffusion-based 3D generative models for shapes, 4D generative modeling remains challenging due to the complexity of object deformations over time. We propose DNF, a new 4D representation for unconditional generative modeling that efficiently models deformable shapes with disentangled shape and motion while capturing high-fidelity details in the deforming objects. To achieve this, we propose a dictionary learning approach to disentangle 4D motion from shape as neural fields. Both shape and motion are represented as learned latent spaces, where each deformable shape is represented by its shape and motion global latent codes, shape-specific coefficient vectors, and shared dictionary information. This captures both shape-specific detail and global shared information in the learned dictionary. Our dictionary-based representation well balances fidelity, contiguity and compression -- combined with a transformer-based diffusion model, our method is able to generate effective, high-fidelity 4D animations.


GaussianSpeech: Audio-Driven Gaussian Avatars

arXiv.org Artificial Intelligence

We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple speech signal with 3D Gaussian splatting to create realistic, temporally coherent motion sequences. We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details, including wrinkles that occur with different expressions. To enable sequence modeling of 3D Gaussian splats with audio, we devise an audio-conditioned transformer model capable of extracting lip and expression features directly from audio input. Due to the absence of high-quality datasets of talking humans in correspondence with audio, we captured a new large-scale multi-view dataset of audio-visual sequences of talking humans with native English accents and diverse facial geometry. GaussianSpeech consistently achieves state-of-the-art performance with visually natural motion at real time rendering rates, while encompassing diverse facial expressions and styles.


End-to-end Piano Performance-MIDI to Score Conversion with Transformers

arXiv.org Artificial Intelligence

The automated creation of accurate musical notation from an expressive human performance is a fundamental task in computational musicology. To this end, we present an end-to-end deep learning approach that constructs detailed musical scores directly from real-world piano performance-MIDI files. We introduce a modern transformer-based architecture with a novel tokenized representation for symbolic music data. Framing the task as sequence-to-sequence translation rather than note-wise classification reduces alignment requirements and annotation costs, while allowing the prediction of more concise and accurate notation. To serialize symbolic music data, we design a custom tokenization stage based on compound tokens that carefully quantizes continuous values. This technique preserves more score information while reducing sequence lengths by $3.5\times$ compared to prior approaches. Using the transformer backbone, our method demonstrates better understanding of note values, rhythmic structure, and details such as staff assignment. When evaluated end-to-end using transcription metrics such as MUSTER, we achieve significant improvements over previous deep learning approaches and complex HMM-based state-of-the-art pipelines. Our method is also the first to directly predict notational details like trill marks or stem direction from performance data. Code and models are available at https://github.com/TimFelixBeyer/MIDI2ScoreTransformer


DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks

arXiv.org Artificial Intelligence

We present DrivAerNet++, the largest and most comprehensive multimodal dataset for aerodynamic car design. DrivAerNet++ comprises 8,000 diverse car designs modeled with high-fidelity computational fluid dynamics (CFD) simulations. The dataset includes diverse car configurations such as fastback, notchback, and estateback, with different underbody and wheel designs to represent both internal combustion engines and electric vehicles. Each entry in the dataset features detailed 3D meshes, parametric models, aerodynamic coefficients, and extensive flow and surface field data, along with segmented parts for car classification and point cloud data. This dataset supports a wide array of machine learning applications including data-driven design optimization, generative modeling, surrogate model training, CFD simulation acceleration, and geometric classification. With more than 39 TB of publicly available engineering data, DrivAerNet++ fills a significant gap in available resources, providing high-quality, diverse data to enhance model training, promote generalization, and accelerate automotive design processes. Along with rigorous dataset validation, we also provide ML benchmarking results on the task of aerodynamic drag prediction, showcasing the breadth of applications supported by our dataset. This dataset is set to significantly impact automotive design and broader engineering disciplines by fostering innovation and improving the fidelity of aerodynamic evaluations.


DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Graph-Based Drag Prediction

arXiv.org Artificial Intelligence

This study introduces DrivAerNet, a large-scale high-fidelity CFD dataset of 3D industry-standard car shapes, and RegDGCNN, a dynamic graph convolutional neural network model, both aimed at aerodynamic car design through machine learning. DrivAerNet, with its 4000 detailed 3D car meshes using 0.5 million surface mesh faces and comprehensive aerodynamic performance data comprising of full 3D pressure, velocity fields, and wall-shear stresses, addresses the critical need for extensive datasets to train deep learning models in engineering applications. It is 60\% larger than the previously available largest public dataset of cars, and is the only open-source dataset that also models wheels and underbody. RegDGCNN leverages this large-scale dataset to provide high-precision drag estimates directly from 3D meshes, bypassing traditional limitations such as the need for 2D image rendering or Signed Distance Fields (SDF). By enabling fast drag estimation in seconds, RegDGCNN facilitates rapid aerodynamic assessments, offering a substantial leap towards integrating data-driven methods in automotive design. Together, DrivAerNet and RegDGCNN promise to accelerate the car design process and contribute to the development of more efficient vehicles. To lay the groundwork for future innovations in the field, the dataset and code used in our study are publicly accessible at \url{https://github.com/Mohamedelrefaie/DrivAerNet}


FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models

arXiv.org Artificial Intelligence

We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from input audio signal. To capture the expressive, detailed nature of human heads, including hair, ears, and finer-scale eye movements, we propose to couple speech signal with the latent space of neural parametric head models to create high-fidelity, temporally coherent motion sequences. We propose a new latent diffusion model for this task, operating in the expression space of neural parametric head models, to synthesize audio-driven realistic head sequences. In the absence of a dataset with corresponding NPHM expressions to audio, we optimize for these correspondences to produce a dataset of temporally-optimized NPHM expressions fit to audio-video recordings of people talking. To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of volumetric human heads, representing a significant advancement in the field of audio-driven 3D animation. Notably, our approach stands out in its ability to generate plausible motion sequences that can produce high-fidelity head animation coupled with the NPHM shape space. Our experimental results substantiate the effectiveness of FaceTalk, consistently achieving superior and visually natural motion, encompassing diverse facial expressions and styles, outperforming existing methods by 75% in perceptual user study evaluation.


PaSCo: Urban 3D Panoptic Scene Completion with Uncertainty Awareness

arXiv.org Artificial Intelligence

We propose the task of Panoptic Scene Completion (PSC) which extends the recently popular Semantic Scene Completion (SSC) task with instance-level information to produce a richer understanding of the 3D scene. Our PSC proposal utilizes a hybrid mask-based technique on the non-empty voxels from sparse multi-scale completions. Whereas the SSC literature overlooks uncertainty which is critical for robotics applications, we instead propose an efficient ensembling to estimate both voxel-wise and instance-wise uncertainties along PSC. This is achieved by building on a multi-input multi-output (MIMO) strategy, while improving performance and yielding better uncertainty for little additional compute. Additionally, we introduce a technique to aggregate permutation-invariant mask predictions. Our experiments demonstrate that our method surpasses all baselines in both Panoptic Scene Completion and uncertainty estimation on three large-scale autonomous driving datasets. Our code and data are available at https://astra-vision.github.io/PaSCo .