Daftry, Shreyansh
ShadowNav: Crater-Based Localization for Nighttime and Permanently Shadowed Region Lunar Navigation
Cauligi, Abhishek, Swan, R. Michael, Ono, Masahiro, Daftry, Shreyansh, Elliott, John, Matthies, Larry, Atha, Deegan
There has been an increase in interest in missions that drive significantly longer distances per day than what has currently been performed. Further, some of these proposed missions require autonomous driving and absolute localization in darkness. For example, the Endurance A mission proposes to drive 1200km of its total traverse at night. The lack of natural light available during such missions limits what can be used as visual landmarks and the range at which landmarks can be observed. In order for planetary rovers to traverse long ranges, onboard absolute localization is critical to the ability of the rover to maintain its planned trajectory and avoid known hazardous regions. Currently, to accomplish absolute localization, a ground in the loop (GITL) operation is performed wherein a human operator matches local maps or images from onboard with orbital images and maps. This GITL operation limits the distance that can be driven in a day to a few hundred meters, which is the distance that the rover can maintain acceptable localization error via relative methods. Previous work has shown that using craters as landmarks is a promising approach for performing absolute localization on the moon during the day. In this work we present a method of absolute localization that utilizes craters as landmarks and matches detected crater edges on the surface with known craters in orbital maps. We focus on a localization method based on a perception system which has an external illuminator and a stereo camera. We evaluate (1) both monocular and stereo based surface crater edge detection techniques, (2) methods of scoring the crater edge matches for optimal localization, and (3) localization performance on simulated Lunar surface imagery at night. We demonstrate that this technique shows promise for maintaining absolute localization error of less than 10m required for most planetary rover missions.
NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge
Agha, Ali, Otsu, Kyohei, Morrell, Benjamin, Fan, David D., Thakker, Rohan, Santamaria-Navarro, Angel, Kim, Sung-Kyun, Bouman, Amanda, Lei, Xianmei, Edlund, Jeffrey, Ginting, Muhammad Fadhil, Ebadi, Kamak, Anderson, Matthew, Pailevanian, Torkom, Terry, Edward, Wolf, Michael, Tagliabue, Andrea, Vaquero, Tiago Stegun, Palieri, Matteo, Tepsuporn, Scott, Chang, Yun, Kalantari, Arash, Chavez, Fernando, Lopez, Brett, Funabiki, Nobuhiro, Miles, Gregory, Touma, Thomas, Buscicchio, Alessandro, Tordesillas, Jesus, Alatur, Nikhilesh, Nash, Jeremy, Walsh, William, Jung, Sunggoo, Lee, Hanseob, Kanellakis, Christoforos, Mayo, John, Harper, Scott, Kaufmann, Marcel, Dixit, Anushri, Correa, Gustavo, Lee, Carlyn, Gao, Jay, Merewether, Gene, Maldonado-Contreras, Jairo, Salhotra, Gautam, Da Silva, Maira Saboia, Ramtoula, Benjamin, Fakoorian, Seyed, Hatteland, Alexander, Kim, Taeyeon, Bartlett, Tara, Stephens, Alex, Kim, Leon, Bergh, Chuck, Heiden, Eric, Lew, Thomas, Cauligi, Abhishek, Heywood, Tristan, Kramer, Andrew, Leopold, Henry A., Choi, Chris, Daftry, Shreyansh, Toupet, Olivier, Wee, Inhwan, Thakur, Abhishek, Feras, Micah, Beltrame, Giovanni, Nikolakopoulos, George, Shim, David, Carlone, Luca, Burdick, Joel
This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved 2nd and 1st place, respectively. We also discuss CoSTAR's demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including: (i) geometric and semantic environment mapping; (ii) a multi-modal positioning system; (iii) traversability analysis and local planning; (iv) global motion planning and exploration behavior; (i) risk-aware mission planning; (vi) networking and decentralized reasoning; and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g. wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.
Machine Vision based Sample-Tube Localization for Mars Sample Return
Daftry, Shreyansh, Ridge, Barry, Seto, William, Pham, Tu-Hoa, Ilhardt, Peter, Maggiolino, Gerard, Van der Merwe, Mark, Brinkman, Alex, Mayo, John, Kulczyski, Eric, Detry, Renaud
A potential Mars Sample Return (MSR) architecture is being jointly studied by NASA and ESA. As currently envisioned, the MSR campaign consists of a series of 3 missions: sample cache, fetch and return to Earth. In this paper, we focus on the fetch part of the MSR, and more specifically the problem of autonomously detecting and localizing sample tubes deposited on the Martian surface. Towards this end, we study two machine-vision based approaches: First, a geometry-driven approach based on template matching that uses hard-coded filters and a 3D shape model of the tube; and second, a data-driven approach based on convolutional neural networks (CNNs) and learned features. Furthermore, we present a large benchmark dataset of sample-tube images, collected in representative outdoor environments and annotated with ground truth segmentation masks and locations. The dataset was acquired systematically across different terrain, illumination conditions and dust-coverage; and benchmarking was performed to study the feasibility of each approach, their relative strengths and weaknesses, and robustness in the presence of adverse environmental conditions.
Machine Learning Based Path Planning for Improved Rover Navigation (Pre-Print Version)
Abcouwer, Neil, Daftry, Shreyansh, Venkatraman, Siddarth, del Sesto, Tyler, Toupet, Olivier, Lanka, Ravi, Song, Jialin, Yue, Yisong, Ono, Masahiro
Enhanced AutoNav (ENav), the baseline surface navigation software for NASA's Perseverance rover, sorts a list of candidate paths for the rover to traverse, then uses the Approximate Clearance Evaluation (ACE) algorithm to evaluate whether the most highly ranked paths are safe. ACE is crucial for maintaining the safety of the rover, but is computationally expensive. If the most promising candidates in the list of paths are all found to be infeasible, ENav must continue to search the list and run time-consuming ACE evaluations until a feasible path is found. In this paper, we present two heuristics that, given a terrain heightmap around the rover, produce cost estimates that more effectively rank the candidate paths before ACE evaluation. The first heuristic uses Sobel operators and convolution to incorporate the cost of traversing high-gradient terrain. The second heuristic uses a machine learning (ML) model to predict areas that will be deemed untraversable by ACE. We used physics simulations to collect training data for the ML model and to run Monte Carlo trials to quantify navigation performance across a variety of terrains with various slopes and rock distributions. Compared to ENav's baseline performance, integrating the heuristics can lead to a significant reduction in ACE evaluations and average computation time per planning cycle, increase path efficiency, and maintain or improve the rate of successful traverses. This strategy of targeting specific bottlenecks with ML while maintaining the original ACE safety checks provides an example of how ML can be infused into planetary science missions and other safety-critical software.