Dadashkarimi, Javid
Search Wide, Focus Deep: Automated Fetal Brain Extraction with Sparse Training Data
Dadashkarimi, Javid, Trujillo, Valeria Pena, Jaimes, Camilo, Zöllei, Lilla, Hoffmann, Malte
Automated fetal brain extraction from full-uterus MRI is a challenging task due to variable head sizes, orientations, complex anatomy, and prevalent artifacts. While deep-learning (DL) models trained on synthetic images have been successful in adult brain extraction, adapting these networks for fetal MRI is difficult due to the sparsity of labeled data, leading to increased false-positive predictions. To address this challenge, we propose a test-time strategy that reduces false positives in networks trained on sparse, synthetic labels. The approach uses a breadth-fine search (BFS) to identify a subvolume likely to contain the fetal brain, followed by a deep-focused sliding window (DFS) search to refine the extraction, pooling predictions to minimize false positives. We train models at different window sizes using synthetic images derived from a small number of fetal brain label maps, augmented with random geometric shapes. Each model is trained on diverse head positions and scales, including cases with partial or no brain tissue. Our framework matches state-of-the-art brain extraction methods on clinical HASTE scans of third-trimester fetuses and exceeds them by up to 5\% in terms of Dice in the second trimester as well as EPI scans across both trimesters. Our results demonstrate the utility of a sliding-window approach and combining predictions from several models trained on synthetic images, for improving brain-extraction accuracy by progressively refining regions of interest and minimizing the risk of missing brain mask slices or misidentifying other tissues as brain.
Enhancement attacks in biomedical machine learning
Rosenblatt, Matthew, Dadashkarimi, Javid, Scheinost, Dustin
The prevalence of machine learning in biomedical research is rapidly growing, yet the trustworthiness of such research is often overlooked. While some previous works have investigated the ability of adversarial attacks to degrade model performance in medical imaging, the ability to falsely improve performance via recently-developed "enhancement attacks" may be a greater threat to biomedical machine learning. In the spirit of developing attacks to better understand trustworthiness, we developed two techniques to drastically enhance prediction performance of classifiers with minimal changes to features: 1) general enhancement of prediction performance, and 2) enhancement of a particular method over another. Our enhancement framework falsely improved classifiers' accuracy from 50% to almost 100% while maintaining high feature similarities between original and enhanced data (Pearson's r's>0.99). Similarly, the method-specific enhancement framework was effective in falsely improving the performance of one method over another. For example, a simple neural network outperformed logistic regression by 17% on our enhanced dataset, although no performance differences were present in the original dataset. Crucially, the original and enhanced data were still similar (r=0.99). Our results demonstrate the feasibility of minor data manipulations to achieve any desired prediction performance, which presents an interesting ethical challenge for the future of biomedical machine learning. These findings emphasize the need for more robust data provenance tracking and other precautionary measures to ensure the integrity of biomedical machine learning research.
Zero-shot Transfer Learning for Semantic Parsing
Dadashkarimi, Javid, Fabbri, Alexander, Tatikonda, Sekhar, Radev, Dragomir R.
While neural networks have shown impressive performance on large datasets, applying these models to tasks where little data is available remains a challenging problem. In this paper we propose to use feature transfer in a zero-shot experimental setting on the task of semantic parsing. We first introduce a new method for learning the shared space between multiple domains based on the prediction of the domain label for each example. Our experiments support the superiority of this method in a zero-shot experimental setting in terms of accuracy metrics compared to state-of-the-art techniques. In the second part of this paper we study the impact of individual domains and examples on semantic parsing performance. We use influence functions to this aim and investigate the sensitivity of domain-label classification loss on each example. Our findings reveal that cross-domain adversarial attacks identify useful examples for training even from the domains the least similar to the target domain. Augmenting our training data with these influential examples further boosts our accuracy at both the token and the sequence level.
Dimension Projection among Languages based on Pseudo-relevant Documents for Query Translation
Dadashkarimi, Javid, Shahshahani, Mahsa S., Tebbifakhr, Amirhossein, Faili, Heshaam, Shakery, Azadeh
Using top-ranked documents in response to a query has been shown to be an effective approach to improve the quality of query translation in dictionary-based cross-language information retrieval. In this paper, we propose a new method for dictionary-based query translation based on dimension projection of embedded vectors from the pseudo-relevant documents in the source language to their equivalents in the target language. To this end, first we learn low-dimensional vectors of the words in the pseudo-relevant collections separately and then aim to find a query-dependent transformation matrix between the vectors of translation pairs appeared in the collections. At the next step, representation of each query term is projected to the target language and then, after using a softmax function, a query-dependent translation model is built. Finally, the model is used for query translation. Our experiments on four CLEF collections in French, Spanish, German, and Italian demonstrate that the proposed method outperforms a word embedding baseline based on bilingual shuffling and a further number of competitive baselines. The proposed method reaches up to 87% performance of machine translation (MT) in short queries and considerable improvements in verbose queries.