Dada, Amin
Towards Conditioning Clinical Text Generation for User Control
Koraş, Osman Alperen, Bahnan, Rabi, Kleesiek, Jens, Dada, Amin
Deploying natural language generation systems in clinical settings remains challenging despite advances in Large Language Models (LLMs), which continue to exhibit hallucinations and factual inconsistencies, necessitating human oversight. This paper explores automated dataset augmentation using LLMs as human proxies to condition LLMs for clinician control without increasing cognitive workload. On the BioNLP ACL'24 Discharge Me! Shared Task, we achieve new state-of-the-art results with simpler methods than prior submissions through more efficient training, yielding a 9\% relative improvement without augmented training and up to 34\% with dataset augmentation. Preliminary human evaluation further supports the effectiveness of our approach, highlighting the potential of augmenting clinical text generation for control to enhance relevance, accuracy, and factual consistency.
MeDiSumQA: Patient-Oriented Question-Answer Generation from Discharge Letters
Dada, Amin, Koras, Osman Alperen, Bauer, Marie, Butler, Amanda, Smith, Kaleb E., Kleesiek, Jens, Friedrich, Julian
While increasing patients' access to medical documents improves medical care, this benefit is limited by varying health literacy levels and complex medical terminology. Large language models (LLMs) offer solutions by simplifying medical information. However, evaluating LLMs for safe and patient-friendly text generation is difficult due to the lack of standardized evaluation resources. To fill this gap, we developed MeDiSumQA. MeDiSumQA is a dataset created from MIMIC-IV discharge summaries through an automated pipeline combining LLM-based question-answer generation with manual quality checks. We use this dataset to evaluate various LLMs on patient-oriented question-answering. Our findings reveal that general-purpose LLMs frequently surpass biomedical-adapted models, while automated metrics correlate with human judgment. By releasing MeDiSumQA on PhysioNet, we aim to advance the development of LLMs to enhance patient understanding and ultimately improve care outcomes.
CLUE: A Clinical Language Understanding Evaluation for LLMs
Dada, Amin, Bauer, Marie, Contreras, Amanda Butler, Koraş, Osman Alperen, Seibold, Constantin Marc, Smith, Kaleb E, Kleesiek, Jens
Large Language Models (LLMs) are expected to significantly contribute to patient care, diagnostics, and administrative processes. Emerging biomedical LLMs aim to address healthcare-specific challenges, including privacy demands and computational constraints. Assessing the models' suitability for this sensitive application area is of the utmost importance. However, evaluation has primarily been limited to non-clinical tasks, which do not reflect the complexity of practical clinical applications. To fill this gap, we present the Clinical Language Understanding Evaluation (CLUE), a benchmark tailored to evaluate LLMs on clinical tasks. CLUE includes six tasks to test the practical applicability of LLMs in complex healthcare settings. Our evaluation includes a total of $25$ LLMs. In contrast to previous evaluations, CLUE shows a decrease in performance for nine out of twelve biomedical models. Our benchmark represents a step towards a standardized approach to evaluating and developing LLMs in healthcare to align future model development with the real-world needs of clinical application. We open-source all evaluation scripts and datasets for future research at https://github.com/TIO-IKIM/CLUE.
Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding
Idrissi-Yaghir, Ahmad, Dada, Amin, Schäfer, Henning, Arzideh, Kamyar, Baldini, Giulia, Trienes, Jan, Hasin, Max, Bewersdorff, Jeanette, Schmidt, Cynthia S., Bauer, Marie, Smith, Kaleb E., Bian, Jiang, Wu, Yonghui, Schlötterer, Jörg, Zesch, Torsten, Horn, Peter A., Seifert, Christin, Nensa, Felix, Kleesiek, Jens, Friedrich, Christoph M.
Recent advances in natural language processing (NLP) can be largely attributed to the advent of pre-trained language models such as BERT and RoBERTa. While these models demonstrate remarkable performance on general datasets, they can struggle in specialized domains such as medicine, where unique domain-specific terminologies, domain-specific abbreviations, and varying document structures are common. This paper explores strategies for adapting these models to domain-specific requirements, primarily through continuous pre-training on domain-specific data. We pre-trained several German medical language models on 2.4B tokens derived from translated public English medical data and 3B tokens of German clinical data. The resulting models were evaluated on various German downstream tasks, including named entity recognition (NER), multi-label classification, and extractive question answering. Our results suggest that models augmented by clinical and translation-based pre-training typically outperform general domain models in medical contexts. We conclude that continuous pre-training has demonstrated the ability to match or even exceed the performance of clinical models trained from scratch. Furthermore, pre-training on clinical data or leveraging translated texts have proven to be reliable methods for domain adaptation in medical NLP tasks.
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Li, Jianning, Zhou, Zongwei, Yang, Jiancheng, Pepe, Antonio, Gsaxner, Christina, Luijten, Gijs, Qu, Chongyu, Zhang, Tiezheng, Chen, Xiaoxi, Li, Wenxuan, Wodzinski, Marek, Friedrich, Paul, Xie, Kangxian, Jin, Yuan, Ambigapathy, Narmada, Nasca, Enrico, Solak, Naida, Melito, Gian Marco, Vu, Viet Duc, Memon, Afaque R., Schlachta, Christopher, De Ribaupierre, Sandrine, Patel, Rajnikant, Eagleson, Roy, Chen, Xiaojun, Mächler, Heinrich, Kirschke, Jan Stefan, de la Rosa, Ezequiel, Christ, Patrick Ferdinand, Li, Hongwei Bran, Ellis, David G., Aizenberg, Michele R., Gatidis, Sergios, Küstner, Thomas, Shusharina, Nadya, Heller, Nicholas, Andrearczyk, Vincent, Depeursinge, Adrien, Hatt, Mathieu, Sekuboyina, Anjany, Löffler, Maximilian, Liebl, Hans, Dorent, Reuben, Vercauteren, Tom, Shapey, Jonathan, Kujawa, Aaron, Cornelissen, Stefan, Langenhuizen, Patrick, Ben-Hamadou, Achraf, Rekik, Ahmed, Pujades, Sergi, Boyer, Edmond, Bolelli, Federico, Grana, Costantino, Lumetti, Luca, Salehi, Hamidreza, Ma, Jun, Zhang, Yao, Gharleghi, Ramtin, Beier, Susann, Sowmya, Arcot, Garza-Villarreal, Eduardo A., Balducci, Thania, Angeles-Valdez, Diego, Souza, Roberto, Rittner, Leticia, Frayne, Richard, Ji, Yuanfeng, Ferrari, Vincenzo, Chatterjee, Soumick, Dubost, Florian, Schreiber, Stefanie, Mattern, Hendrik, Speck, Oliver, Haehn, Daniel, John, Christoph, Nürnberger, Andreas, Pedrosa, João, Ferreira, Carlos, Aresta, Guilherme, Cunha, António, Campilho, Aurélio, Suter, Yannick, Garcia, Jose, Lalande, Alain, Vandenbossche, Vicky, Van Oevelen, Aline, Duquesne, Kate, Mekhzoum, Hamza, Vandemeulebroucke, Jef, Audenaert, Emmanuel, Krebs, Claudia, van Leeuwen, Timo, Vereecke, Evie, Heidemeyer, Hauke, Röhrig, Rainer, Hölzle, Frank, Badeli, Vahid, Krieger, Kathrin, Gunzer, Matthias, Chen, Jianxu, van Meegdenburg, Timo, Dada, Amin, Balzer, Miriam, Fragemann, Jana, Jonske, Frederic, Rempe, Moritz, Malorodov, Stanislav, Bahnsen, Fin H., Seibold, Constantin, Jaus, Alexander, Marinov, Zdravko, Jaeger, Paul F., Stiefelhagen, Rainer, Santos, Ana Sofia, Lindo, Mariana, Ferreira, André, Alves, Victor, Kamp, Michael, Abourayya, Amr, Nensa, Felix, Hörst, Fabian, Brehmer, Alexander, Heine, Lukas, Hanusrichter, Yannik, Weßling, Martin, Dudda, Marcel, Podleska, Lars E., Fink, Matthias A., Keyl, Julius, Tserpes, Konstantinos, Kim, Moon-Sung, Elhabian, Shireen, Lamecker, Hans, Zukić, Dženan, Paniagua, Beatriz, Wachinger, Christian, Urschler, Martin, Duong, Luc, Wasserthal, Jakob, Hoyer, Peter F., Basu, Oliver, Maal, Thomas, Witjes, Max J. H., Schiele, Gregor, Chang, Ti-chiun, Ahmadi, Seyed-Ahmad, Luo, Ping, Menze, Bjoern, Reyes, Mauricio, Deserno, Thomas M., Davatzikos, Christos, Puladi, Behrus, Fua, Pascal, Yuille, Alan L., Kleesiek, Jens, Egger, Jan
Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedback
On the Impact of Cross-Domain Data on German Language Models
Dada, Amin, Chen, Aokun, Peng, Cheng, Smith, Kaleb E, Idrissi-Yaghir, Ahmad, Seibold, Constantin Marc, Li, Jianning, Heiliger, Lars, Yang, Xi, Friedrich, Christoph M., Truhn, Daniel, Egger, Jan, Bian, Jiang, Kleesiek, Jens, Wu, Yonghui
Traditionally, large language models have been either trained on general web crawls or domain-specific data. However, recent successes of generative large language models, have shed light on the benefits of cross-domain datasets. To examine the significance of prioritizing data diversity over quality, we present a German dataset comprising texts from five domains, along with another dataset aimed at containing high-quality data. Through training a series of models ranging between 122M and 750M parameters on both datasets, we conduct a comprehensive benchmark on multiple downstream tasks. Our findings demonstrate that the models trained on the cross-domain dataset outperform those trained on quality data alone, leading to improvements up to $4.45\%$ over the previous state-of-the-art. The models are available at https://huggingface.co/ikim-uk-essen
FAM: Relative Flatness Aware Minimization
Adilova, Linara, Abourayya, Amr, Li, Jianning, Dada, Amin, Petzka, Henning, Egger, Jan, Kleesiek, Jens, Kamp, Michael
Flatness of the loss curve around a model at hand has been shown to empirically correlate with its generalization ability. Optimizing for flatness has been proposed as early as 1994 by Hochreiter and Schmidthuber, and was followed by more recent successful sharpness-aware optimization techniques. Their widespread adoption in practice, though, is dubious because of the lack of theoretically grounded connection between flatness and generalization, in particular in light of the reparameterization curse - certain reparameterizations of a neural network change most flatness measures but do not change generalization. Recent theoretical work suggests that a particular relative flatness measure can be connected to generalization and solves the reparameterization curse. In this paper, we derive a regularizer based on this relative flatness that is easy to compute, fast, efficient, and works with arbitrary loss functions. It requires computing the Hessian only of a single layer of the network, which makes it applicable to large neural networks, and with it avoids an expensive mapping of the loss surface in the vicinity of the model. In an extensive empirical evaluation we show that this relative flatness aware minimization (FAM) improves generalization in a multitude of applications and models, both in finetuning and standard training. We make the code available at github.