Dacrema, Maurizio Ferrari
Reproducibility and Artifact Consistency of the SIGIR 2022 Recommender Systems Papers Based on Message Passing
Dacrema, Maurizio Ferrari, Benigni, Michael, Ferro, Nicola
Graph-based techniques relying on neural networks and embeddings have gained attention as a way to develop Recommender Systems (RS) with several papers on the topic presented at SIGIR 2022 and 2023. Given the importance of ensuring that published research is methodologically sound and reproducible, in this paper we analyze 10 graph-based RS papers, most of which were published at SIGIR 2022, and assess their impact on subsequent work published in SIGIR 2023. Our analysis reveals several critical points that require attention: (i) the prevalence of bad practices, such as erroneous data splits or information leakage between training and testing data, which call into question the validity of the results; (ii) frequent inconsistencies between the provided artifacts (source code and data) and their descriptions in the paper, causing uncertainty about what is actually being evaluated; and (iii) the preference for new or complex baselines that are weaker compared to simpler ones, creating the impression of continuous improvement even when, particularly for the Amazon-Book dataset, the state-of-the-art has significantly worsened. Due to these issues, we are unable to confirm the claims made in most of the papers we examined and attempted to reproduce.
Impression-Aware Recommender Systems
Maurera, Fernando B. Pรฉrez, Dacrema, Maurizio Ferrari, Castells, Pablo, Cremonesi, Paolo
Novel data sources bring new opportunities to improve the quality of recommender systems. Impressions are a novel data source containing past recommendations (shown items) and traditional interactions. Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research. The relevance and interest of impressions have increased over the years; hence, the need for a review of relevant work on this type of recommenders. We present a systematic literature review on recommender systems using impressions, focusing on three fundamental angles in research: recommenders, datasets, and evaluation methodologies. We provide three categorizations of papers describing recommenders using impressions, present each reviewed paper in detail, describe datasets with impressions, and analyze the existing evaluation methodologies. Lastly, we present open questions and future directions of interest, highlighting aspects missing in the literature that can be addressed in future works.
Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances
Turati, Gloria, Dacrema, Maurizio Ferrari, Cremonesi, Paolo
In recent years, Variational Quantum Algorithms (VQAs) have emerged as a promising approach for solving optimization problems on quantum computers in the NISQ era. However, one limitation of VQAs is their reliance on fixed-structure circuits, which may not be taylored for specific problems or hardware configurations. A leading strategy to address this issue are Adaptative VQAs, which dynamically modify the circuit structure by adding and removing gates, and optimize their parameters during the training. Several Adaptative VQAs, based on heuristics such as circuit shallowness, entanglement capability and hardware compatibility, have already been proposed in the literature, but there is still lack of a systematic comparison between the different methods. In this paper, we aim to fill this gap by analyzing three Adaptative VQAs: Evolutionary Variational Quantum Eigensolver (EVQE), Variable Ansatz (VAns), already proposed in the literature, and Random Adapt-VQE (RA-VQE), a random approach we introduce as a baseline. In order to compare these algorithms to traditional VQAs, we also include the Quantum Approximate Optimization Algorithm (QAOA) in our analysis. We apply these algorithms to QUBO problems and study their performance by examining the quality of the solutions found and the computational times required. Additionally, we investigate how the choice of the hyperparameters can impact the overall performance of the algorithms, highlighting the importance of selecting an appropriate methodology for hyperparameter tuning. Our analysis sets benchmarks for Adaptative VQAs designed for near-term quantum devices and provides valuable insights to guide future research in this area.
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering
Maurera, Fernando Benjamรญn Pรฉrez, Dacrema, Maurizio Ferrari, Cremonesi, Paolo
This work explores the reproducibility of CFGAN. CFGAN and its family of models (TagRec, MTPR, and CRGAN) learn to generate personalized and fake-but-realistic rankings of preferences for top-N recommendations by using previous interactions. This work successfully replicates the results published in the original paper and discusses the impact of certain differences between the CFGAN framework and the model used in the original evaluation. The absence of random noise and the use of real user profiles as condition vectors leaves the generator prone to learn a degenerate solution in which the output vector is identical to the input vector, therefore, behaving essentially as a simple autoencoder. The work further expands the experimental analysis comparing CFGAN against a selection of simple and well-known properly optimized baselines, observing that CFGAN is not consistently competitive against them despite its high computational cost. To ensure the reproducibility of these analyses, this work describes the experimental methodology and publishes all datasets and source code.
Eigenvalue analogy for confidence estimation in item-based recommender systems
Dacrema, Maurizio Ferrari, Cremonesi, Paolo
Item-item collaborative filtering (CF) models are a well known and studied family of recommender systems, however current literature does not provide any theoretical explanation of the conditions under which item-based recommendations will succeed or fail. We investigate the existence of an ideal item-based CF method able to make perfect recommendations. This CF model is formalized as an eigenvalue problem, where estimated ratings are equivalent to the true (unknown) ratings multiplied by a user-specific eigenvalue of the similarity matrix. Preliminary experiments show that the magnitude of the eigenvalue is proportional to the accuracy of recommendations for that user and therefore it can provide reliable measure of confidence.
A novel graph-based model for hybrid recommendations in cold-start scenarios
Bernardis, Cesare, Dacrema, Maurizio Ferrari, Cremonesi, Paolo
Cold-start is a very common and still open problem in the Recommender Systems literature. Since cold start items do not have any interaction, collaborative algorithms are not applicable. One of the main strategies is to use pure or hybrid content-based approaches, which usually yield to lower recommendation quality than collaborative ones. Some techniques to optimize performance of this type of approaches have been studied in recent past. One of them is called feature weighting, which assigns to every feature a real value, called weight, that estimates its importance. Statistical techniques for feature weighting commonly used in Information Retrieval, like TF-IDF, have been adapted for Recommender Systems, but they often do not provide sufficient quality improvements. More recent approaches, FBSM and LFW, estimate weights by leveraging collaborative information via machine learning, in order to learn the importance of a feature based on other users opinions. This type of models have shown promising results compared to classic statistical analyzes cited previously. We propose a novel graph, feature-based machine learning model to face the cold-start item scenario, learning the relevance of features from probabilities of item-based collaborative filtering algorithms.