Goto

Collaborating Authors

 Dabo, Issa-Mbenard


High-dimensional ridge regression with random features for non-identically distributed data with a variance profile

arXiv.org Machine Learning

The behavior of the random feature model in the high-dimensional regression framework has become a popular issue of interest in the machine learning literature}. This model is generally considered for feature vectors $x_i = \Sigma^{1/2} x_i'$, where $x_i'$ is a random vector made of independent and identically distributed (iid) entries, and $\Sigma$ is a positive definite matrix representing the covariance of the features. In this paper, we move beyond {\CB this standard assumption by studying the performances of the random features model in the setting of non-iid feature vectors}. Our approach is related to the analysis of the spectrum of large random matrices through random matrix theory (RMT) {\CB and free probability} results. We turn to the analysis of non-iid data by using the notion of variance profile {\CB which} is {\CB well studied in RMT.} Our main contribution is then the study of the limits of the training and {\CB prediction} risks associated to the ridge estimator in the random features model when its dimensions grow. We provide asymptotic equivalents of these risks that capture the behavior of ridge regression with random features in a {\CB high-dimensional} framework. These asymptotic equivalents, {\CB which prove to be sharp in numerical experiments}, are retrieved by adapting, to our setting, established results from operator-valued free probability theory. Moreover, {\CB for various classes of random feature vectors that have not been considered so far in the literature}, our approach allows to show the appearance of the double descent phenomenon when the ridge regularization parameter is small enough.


High-dimensional analysis of ridge regression for non-identically distributed data with a variance profile

arXiv.org Machine Learning

High-dimensional linear regression has been thoroughly studied in the context of independent and identically distributed data. We propose to investigate high-dimensional regression models for independent but non-identically distributed data. To this end, we suppose that the set of observed predictors (or features) is a random matrix with a variance profile and with dimensions growing at a proportional rate. Assuming a random effect model, we study the predictive risk of the ridge estimator for linear regression with such a variance profile. In this setting, we provide deterministic equivalents of this risk and of the degree of freedom of the ridge estimator. For certain class of variance profile, our work highlights the emergence of the well-known double descent phenomenon in high-dimensional regression for the minimum norm least-squares estimator when the ridge regularization parameter goes to zero. We also exhibit variance profiles for which the shape of this predictive risk differs from double descent. The proofs of our results are based on tools from random matrix theory in the presence of a variance profile that have not been considered so far to study regression models. Numerical experiments are provided to show the accuracy of the aforementioned deterministic equivalents on the computation of the predictive risk of ridge regression. We also investigate the similarities and differences that exist with the standard setting of independent and identically distributed data.