Goto

Collaborating Authors

 Daan Wierstra


Matching Networks for One Shot Learning

Neural Information Processing Systems

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.


Towards Conceptual Compression

Neural Information Processing Systems

We introduce convolutional DRAW, a homogeneous deep generative model achieving state-of-the-art performance in latent variable image modeling. The algorithm naturally stratifies information into higher and lower level details, creating abstract features and as such addressing one of the fundamentally desired properties of representation learning. Furthermore, the hierarchical ordering of its latents creates the opportunity to selectively store global information about an image, yielding a high quality'conceptual compression' framework.


Relational recurrent neural networks

Neural Information Processing Systems

Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected - i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module - a Relational Memory Core (RMC) - which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g.


Imagination-Augmented Agents for Deep Reinforcement Learning

Neural Information Processing Systems

We introduce Imagination-Augmented Agents (I2As), a novel architecture for deep reinforcement learning combining model-free and model-based aspects. In contrast to most existing model-based reinforcement learning and planning methods, which prescribe how a model should be used to arrive at a policy, I2As learn to interpret predictions from a learned environment model to construct implicit plans in arbitrary ways, by using the predictions as additional context in deep policy networks. I2As show improved data efficiency, performance, and robustness to model misspecification compared to several baselines.