Döhler, Sebastian
POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning
Schubert, Frederik, Benjamins, Carolin, Döhler, Sebastian, Rosenhahn, Bodo, Lindauer, Marius
The goal of Unsupervised Reinforcement Learning (URL) is to find a reward-agnostic prior policy on a task domain, such that the sample-efficiency on supervised downstream tasks is improved. Although agents initialized with such a prior policy can achieve a significantly higher reward with fewer samples when finetuned on the downstream task, it is still an open question how an optimal pretrained prior policy can be achieved in practice. In this work, we present POLTER (Policy Trajectory Ensemble Regularization) - a general method to regularize the pretraining that can be applied to any URL algorithm and is especially useful on data- and knowledge-based URL algorithms. It utilizes an ensemble of policies that are discovered during pretraining and moves the policy of the URL algorithm closer to its optimal prior. Our method is based on a theoretical framework, and we analyze its practical effects on a white-box benchmark, allowing us to study POLTER with full control. In our main experiments, we evaluate POLTER on the Unsupervised Reinforcement Learning Benchmark (URLB), which consists of 12 tasks in 3 domains. We demonstrate the generality of our approach by improving the performance of a diverse set of data- and knowledge-based URL algorithms by 19% on average and up to 40% in the best case. Under a fair comparison with tuned baselines and tuned POLTER, we establish a new state-of-the-art for model-free methods on the URLB.
Contextualize Me -- The Case for Context in Reinforcement Learning
Benjamins, Carolin, Eimer, Theresa, Schubert, Frederik, Mohan, Aditya, Döhler, Sebastian, Biedenkapp, André, Rosenhahn, Bodo, Hutter, Frank, Lindauer, Marius
While Reinforcement Learning ( RL) has made great strides towards solving increasingly complicated problems, many algorithms are still brittle to even slight environmental changes. Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner, thereby enabling flexible, precise and interpretable task specification and generation. Our goal is to show how the framework of cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks. We confirm the insight that optimal behavior in cRL requires context information, as in other related areas of partial observability. To empirically validate this in the cRL framework, we provide various context-extended versions of common RL environments. They are part of the first benchmark library, CARL, designed for generalization based on cRL extensions of popular benchmarks, which we propose as a testbed to further study general agents. We show that in the contextual setting, even simple RL environments become challenging - and that naive solutions are not enough to generalize across complex context spaces.