D'Ambrosio, Bruce
Combining Symbolic and Numeric Approaches to Uncertainty Management
D'Ambrosio, Bruce
A complete approach to reasoning under uncertainty requires support for incremental and interactive formulation and revision of, as well as reasoning with, models of the problem domain capable of representing our uncertainty. We present a hybrid reasoning scheme which combines symbolic and numeric methods for uncertainty management to provide efficient and effective support for each of these tasks. The hybrid is based on symbolic techniques adapted from Assumption-based Truth Maintenance systems (ATMS), combined with numeric methods adapted from the Dempster/Shafer theory of evidence, as extended in Baldwin's Support Logic Programming system. The hybridization is achieved by viewing an ATMS as a symbolic algebra system for uncertainty calculations. This technique has several major advantages over conventional methods for performing inference with numeric certainty estimates in addition to the ability to dynamically determine hypothesis spaces, including improved management of dependent and partially independent evidence, faster run-time evaluation of propositional certainties, the ability to query the certainty value of a proposition from multiple perspectives, and the ability to incrementally extend or revise domain models.
Local Expression Languages for Probabilistic Dependence: a Preliminary Report
D'Ambrosio, Bruce
We present a generalization of the local expression language used in the Symbolic Probabilistic Inference (SPI) approach to inference in belief nets [1l, [8]. The local expression language in SPI is the language in which the dependence of a node on its antecedents is described. The original language represented the dependence as a single monolithic conditional probability distribution. The extended language provides a set of operators (*, +, and -) which can be used to specify methods for combining partial conditional distributions. As one instance of the utility of this extension, we show how this extended language can be used to capture the semantics, representational advantages, and inferential complexity advantages of the "noisy or" relationship.
Parallelizing Probabilistic Inference: Some Early Explorations
D'Ambrosio, Bruce, Fountain, Tony, Li, Zhaoyu
We report on an experimental investigation into opportunities for parallelism in beliefnet inference. Specifically, we report on a study performed of the available parallelism, on hypercube style machines, of a set of randomly generated belief nets, using factoring (SPI) style inference algorithms. Our results indicate that substantial speedup is available, but that it is available only through parallelization of individual conformal product operations, and depends critically on finding an appropriate factoring. We find negligible opportunity for parallelism at the topological, or clustering tree, level.
An efficient approach for finding the MPE in belief networks
Li, Zhaoyu, D'Ambrosio, Bruce
Given a belief network with evidence, the task of finding the I most probable explanations (MPE) in the belief network is that of identifying and ordering the I most probable instantiations of the non-evidence nodes of the belief network. Although many approaches have been proposed for solving this problem, most work only for restricted topologies (i.e., singly connected belief networks). In this paper, we will present a new approach for finding I MPEs in an arbitrary belief network. First, we will present an algorithm for finding the MPE in a belief network. Then, we will present a linear time algorithm for finding the next MPE after finding the first MPE. And finally, we will discuss the problem of finding the MPE for a subset of variables of a belief network, and show that the problem can be efficiently solved by this approach.
Incremental Probabilistic Inference
D'Ambrosio, Bruce
Propositional representation services such as truth maintenance systems offer powerful support for incremental, interleaved, problem-model construction and evaluation. Probabilistic inference systems, in contrast, have lagged behind in supporting this incrementality typically demanded by problem solvers. The problem, we argue, is that the basic task of probabilistic inference is typically formulated at too large a grain-size. We show how a system built around a smaller grain-size inference task can have the desired incrementality and serve as the basis for a low-level (propositional) probabilistic representation service.
Some Experiments with Real-Time Decision Algorithms
D'Ambrosio, Bruce, Burgess, Scott
Real-time Decision algorithms are a class of incremental resource-bounded [Horvitz, 89] or anytime [Dean, 93] algorithms for evaluating influence diagrams. We present a test domain for real-time decision algorithms, and the results of experiments with several Real-time Decision Algorithms in this domain. The results demonstrate high performance for two algorithms, a decision-evaluation variant of Incremental Probabilisitic Inference [D'Ambrosio 93] and a variant of an algorithm suggested by Goldszmidt, [Goldszmidt, 95], PK-reduced. We discuss the implications of these experimental results and explore the broader applicability of these algorithms.
Multiplicative Factorization of Noisy-Max
Takikawa, Masami, D'Ambrosio, Bruce
The noisy-or and its generalization noisy-max have been utilized to reduce the complexity of knowledge acquisition. In this paper, we present a new representation of noisy-max that allows for efficient inference in general Bayesian networks. Empirical studies show that our method is capable of computing queries in well-known large medical networks, QMR-DT and CPCS, for which no previous exact inference method has been shown to perform well.
Real-Time Inference with Large-Scale Temporal Bayes Nets
Takikawa, Masami, D'Ambrosio, Bruce, Wright, Ed
An increasing number of applications require real-time reasoning under uncertainty with streaming input. The temporal (dynamic) Bayes net formalism provides a powerful representational framework for such applications. However, existing exact inference algorithms for dynamic Bayes nets do not scale to the size of models required for real world applications which often contain hundreds or even thousands of variables for each time slice. In addition, existing algorithms were not developed with real-time processing in mind. We have developed a new computational approach to support real-time exact inference in large temporal Bayes nets. Our approach tackles scalability by recognizing that the complexity of the inference depends on the number of interface nodes between time slices and by exploiting the distinction between static and dynamic nodes in order to reduce the number of interface nodes and to factorize their joint probability distribution. We approach the real-time issue by organizing temporal Bayes nets into static representations, and then using the symbolic probabilistic inference algorithm to derive analytic expressions for the static representations. The parts of these expressions that do not change at each time step are pre-computed. The remaining parts are compiled into efficient procedural code so that the memory and CPU resources required by the inference are small and fixed.