Goto

Collaborating Authors

 Curry, Justin


Position Paper: Challenges and Opportunities in Topological Deep Learning

arXiv.org Machine Learning

Traditional machine learning often assumes that the observed data of interest are supported on a linear vector space Topological deep learning (TDL) is a rapidly and can be described by a set of feature vectors. However, evolving field that uses topological features to understand there is growing awareness that, in many cases, this viewpoint and design deep learning models. This is insufficient to describe several data within the real paper posits that TDL may complement graph representation world. For example, molecules may be described more appropriately learning and geometric deep learning by graphs than feature vectors. Other examples by incorporating topological concepts, and can include three-dimensional objects represented by meshes, thus provide a natural choice for various machine as encountered in computer graphics and geometry processing, learning settings. To this end, this paper discusses or data supported on top of a complex social network open problems in TDL, ranging from practical of interrelated actors. Hence, there has been an increased benefits to theoretical foundations. For each problem, interest in importing concepts from geometry and topology it outlines potential solutions and future research into the usual machine learning pipelines to gain further opportunities.


Algebraic and Geometric Models for Space Networking

arXiv.org Artificial Intelligence

In this paper we introduce some new algebraic and geometric perspectives on networked space communications. Our main contribution is a novel definition of a time-varying graph (TVG), defined in terms of a matrix with values in subsets of the real line P(R). We leverage semi-ring properties of P(R) to model multi-hop communication in a TVG using matrix multiplication and a truncated Kleene star. This leads to novel statistics on the communication capacity of TVGs called lifetime curves, which we generate for large samples of randomly chosen STARLINK satellites, whose connectivity is modeled over day-long simulations. Determining when a large subsample of STARLINK is temporally strongly connected is further analyzed using novel metrics introduced here that are inspired by topological data analysis (TDA). To better model networking scenarios between the Earth and Mars, we introduce various semi-rings capable of modeling propagation delay as well as protocols common to Delay Tolerant Networking (DTN), such as store-and-forward. Finally, we illustrate the applicability of zigzag persistence for featurizing different space networks and demonstrate the efficacy of K-Nearest Neighbors (KNN) classification for distinguishing Earth-Mars and Earth-Moon satellite systems using time-varying topology alone.