Goto

Collaborating Authors

 Curry, Edward


Towards Enabling FAIR Dataspaces Using Large Language Models

arXiv.org Artificial Intelligence

Dataspaces have recently gained adoption across various sectors, including traditionally less digitized domains such as culture. Leveraging Semantic Web technologies helps to make dataspaces FAIR, but their complexity poses a significant challenge to the adoption of dataspaces and increases their cost. The advent of Large Language Models (LLMs) raises the question of how these models can support the adoption of FAIR dataspaces. In this work, we demonstrate the potential of LLMs in dataspaces with a concrete example. We also derive a research agenda for exploring this emerging field.


Visual Semantic Multimedia Event Model for Complex Event Detection in Video Streams

arXiv.org Artificial Intelligence

Multimedia data is highly expressive and has traditionally been very difficult for a machine to interpret. Middleware systems such as complex event processing (CEP) mine patterns from data streams and send notifications to users in a timely fashion. Presently, CEP systems have inherent limitations to process multimedia streams due to its data complexity and the lack of an underlying structured data model. In this work, we present a visual event specification method to enable complex multimedia event processing by creating a semantic knowledge representation derived from low-level media streams. The method enables the detection of high-level semantic concepts from the media streams using an ensemble of pattern detection capabilities. The semantic model is aligned with a multimedia CEP engine deep learning models to give flexibility to end-users to build rules using spatiotemporal event calculus. This enhances CEP capability to detect patterns from media streams and bridge the semantic gap between highly expressive knowledge-centric user queries to the low-level features of the multimedia data. We have built a small traffic event ontology prototype to validate the approach and performance. The paper contribution is threefold-i) we present a knowledge graph representation for multimedia streams, ii) a hierarchal event network to detect visual patterns from media streams and iii) define complex pattern rules for complex multimedia event reasoning using event calculus.


Knowledge Graph Driven Approach to Represent Video Streams for Spatiotemporal Event Pattern Matching in Complex Event Processing

arXiv.org Artificial Intelligence

Complex Event Processing (CEP) is an event processing paradigm to perform real-time analytics over streaming data and match high-level event patterns. Presently, CEP is limited to process structured data stream. Video streams are complicated due to their unstructured data model and limit CEP systems to perform matching over them. This work introduces a graph-based structure for continuous evolving video streams, which enables the CEP system to query complex video event patterns. We propose the Video Event Knowledge Graph (VEKG), a graph driven representation of video data. VEKG models video objects as nodes and their relationship interaction as edges over time and space. It creates a semantic knowledge representation of video data derived from the detection of high-level semantic concepts from the video using an ensemble of deep learning models. A CEP-based state optimization - VEKG-Time Aggregated Graph (VEKG-TAG) is proposed over VEKG representation for faster event detection. VEKG-TAG is a spatiotemporal graph aggregation method that provides a summarized view of the VEKG graph over a given time length. We defined a set of nine event pattern rules for two domains (Activity Recognition and Traffic Management), which act as a query and applied over VEKG graphs to discover complex event patterns. To show the efficacy of our approach, we performed extensive experiments over 801 video clips across 10 datasets. The proposed VEKG approach was compared with other state-of-the-art methods and was able to detect complex event patterns over videos with F-Score ranging from 0.44 to 0.90. In the given experiments, the optimized VEKG-TAG was able to reduce 99% and 93% of VEKG nodes and edges, respectively, with 5.19X faster search time, achieving sub-second median latency of 4-20 milliseconds.


Traffic Prediction Framework for OpenStreetMap using Deep Learning based Complex Event Processing and Open Traffic Cameras

arXiv.org Artificial Intelligence

Displaying near-real-time traffic information is a useful feature of digital navigation maps. However, most commercial providers rely on privacy-compromising measures such as deriving location information from cellphones to estimate traffic. The lack of an open-source traffic estimation method using open data platforms is a bottleneck for building sophisticated navigation services on top of OpenStreetMap (OSM). We propose a deep learning-based Complex Event Processing (CEP) method that relies on publicly available video camera streams for traffic estimation. The proposed framework performs near-real-time object detection and objects property extraction across camera clusters in parallel to derive multiple measures related to traffic with the results visualized on OpenStreetMap. The estimation of object properties (e.g. vehicle speed, count, direction) provides multidimensional data that can be leveraged to create metrics and visualization for congestion beyond commonly used density-based measures. Our approach couples both flow and count measures during interpolation by considering each vehicle as a sample point and their speed as weight. We demonstrate multidimensional traffic metrics (e.g. flow rate, congestion estimation) over OSM by processing 22 traffic cameras from London streets. The system achieves a near-real-time performance of 1.42 seconds median latency and an average F-score of 0.80.


Human Assisted Artificial Intelligence Based Technique to Create Natural Features for OpenStreetMap

arXiv.org Artificial Intelligence

In this work, we propose an AI-based technique using freely available satellite images like Landsat and Sentinel to create natural features over OSM in congruence with human editors acting as initiators and validators. The method is based on Interactive Machine Learning technique where human inputs are coupled with the machine to solve complex problems efficiently as compare to pure autonomous process. We use a bottom-up approach where a machine learning (ML) pipeline in loop with editors is used to extract classes using spectral signatures of images and later convert them to editable features to create natural features.


Distributional-Relational Models: Scalable Semantics for Databases

AAAI Conferences

The crisp/brittle semantic model behind databases limits the scale in which data consumers can query, explore, integrate and process structured data. Approaches aiming to provide more comprehensive semantic models for databases, which are purely logic-based (e.g. as in Semantic Web databases) have major scalability limitations in the acquisition of structured semantic and commonsense data. This work describes a complementary semantic model for databases which has semantic approximation at its center. This model uses distributional semantic models (DSMs) to extend structured data semantics. DSMs support the automatic construction of semantic and commonsense models from large-scale unstructured text and provides a simple model to analyze similarities in the structured data. The combination of distributional and structured data semantics provides a simple and promising solution to address the challenges associated with the interaction and processing of structured data.


Distributional Relational Networks

AAAI Conferences

This work introduces distributional relational networks (DRNs), a knowledge representation (KR) framework which focuses on allowing semantic approximations over large-scale and heterogeneous knowledge bases. The proposed model uses the distributional semantics information embedded in large text/data corpora to provide a comprehensive and principled solution for semantic approximation. DRNs can be applied to open domain knowledge bases and can be used as a KR model for commonsense reasoning. Experimental results show the suitability of DRNs as a semantically flexible KR framework.