Goto

Collaborating Authors

 Cui, Yuanhao


AI-in-the-Loop Sensing and Communication Joint Design for Edge Intelligence

arXiv.org Artificial Intelligence

Recent breakthroughs in artificial intelligence (AI), wireless communications, and sensing technologies have accelerated the evolution of edge intelligence. However, conventional systems still grapple with issues such as low communication efficiency, redundant data acquisition, and poor model generalization. To overcome these challenges, we propose an innovative framework that enhances edge intelligence through AI-in-the-loop joint sensing and communication (JSAC). This framework features an AI-driven closed-loop control architecture that jointly optimizes system resources, thereby delivering superior system-level performance. A key contribution of our work is establishing an explicit relationship between validation loss and the system's tunable parameters. This insight enables dynamic reduction of the generalization error through AI-driven closed-loop control. Specifically, for sensing control, we introduce an adaptive data collection strategy based on gradient importance sampling, allowing edge devices to autonomously decide when to terminate data acquisition and how to allocate sample weights based on real-time model feedback. For communication control, drawing inspiration from stochastic gradient Langevin dynamics (SGLD), our joint optimization of transmission power and batch size converts channel and data noise into gradient perturbations that help mitigate overfitting. Experimental evaluations demonstrate that our framework reduces communication energy consumption by up to 77 percent and sensing costs measured by the number of collected samples by up to 52 percent while significantly improving model generalization -- with up to 58 percent reductions of the final validation loss. It validates that the proposed scheme can harvest the mutual benefit of AI and JSAC systems by incorporating the model itself into the control loop of the system.


On Privacy, Security, and Trustworthiness in Distributed Wireless Large AI Models (WLAM)

arXiv.org Artificial Intelligence

Combining wireless communication with large artificial intelligence (AI) models can open up a myriad of novel application scenarios. In sixth generation (6G) networks, ubiquitous communication and computing resources allow large AI models to serve democratic large AI models-related services to enable real-time applications like autonomous vehicles, smart cities, and Internet of Things (IoT) ecosystems. However, the security considerations and sustainable communication resources limit the deployment of large AI models over distributed wireless networks. This paper provides a comprehensive overview of privacy, security, and trustworthy for distributed wireless large AI model (WLAM). In particular, a detailed privacy and security are analysis for distributed WLAM is fist revealed. The classifications and theoretical findings about privacy and security in distributed WLAM are discussed. Then the trustworthy and ethics for implementing distributed WLAM are described. Finally, the comprehensive applications of distributed WLAM are presented in the context of electromagnetic signal processing.


Near-field Beamforming for Extremely Large-scale MIMO Based on Unsupervised Deep Learning

arXiv.org Artificial Intelligence

Extremely Large-scale Array (ELAA) is considered a frontier technology for future communication systems, pivotal in improving wireless systems' rate and spectral efficiency. However, as ELAA employs a multitude of antennas operating at higher frequencies, users are typically situated in the near-field region where the spherical wavefront propagates. This inevitably leads to a significant increase in the overhead of beam training, requiring complex two-dimensional beam searching in both the angle domain and the distance domain. To address this problem, we propose a near-field beamforming method based on unsupervised deep learning. Our convolutional neural network efficiently extracts complex channel state information features by strategically selecting padding and kernel size. We optimize the beamformers to maximize achievable rates in a multi-user network without relying on predefined custom codebooks. Upon deployment, the model requires solely the input of pre-estimated channel state information to derive the optimal beamforming vector. Simulation results show that our proposed scheme can obtain stable beamforming gain compared with the baseline scheme. Furthermore, owing to the inherent traits of deep learning methodologies, this approach substantially diminishes the beam training costs in near-field regions.