Goto

Collaborating Authors

 Cui, Xiaodong


Bilevel Joint Unsupervised and Supervised Training for Automatic Speech Recognition

arXiv.org Artificial Intelligence

In this paper, we propose a bilevel joint unsupervised and supervised training (BL-JUST) framework for automatic speech recognition. Compared to the conventional pre-training and fine-tuning strategy which is a disconnected two-stage process, BL-JUST tries to optimize an acoustic model such that it simultaneously minimizes both the unsupervised and supervised loss functions. Because BL-JUST seeks matched local optima of both loss functions, acoustic representations learned by the acoustic model strike a good balance between being generic and task-specific. We solve the BL-JUST problem using penalty-based bilevel gradient descent and evaluate the trained deep neural network acoustic models on various datasets with a variety of architectures and loss functions. We show that BL-JUST can outperform the widely-used pre-training and fine-tuning strategy and some other popular semi-supervised techniques.


Training Nonlinear Transformers for Chain-of-Thought Inference: A Theoretical Generalization Analysis

arXiv.org Artificial Intelligence

Chain-of-Thought (CoT) is an efficient prompting method that enables the reasoning ability of large language models by augmenting the query using multiple examples with multiple intermediate steps. Despite the empirical success, the theoretical understanding of how to train a Transformer to achieve the CoT ability remains less explored. This is primarily due to the technical challenges involved in analyzing the nonconvex optimization on nonlinear attention models. To the best of our knowledge, this work provides the first theoretical study of training Transformers with nonlinear attention to obtain the CoT generalization capability so that the resulting model can inference on unseen tasks when the input is augmented by examples of the new task. We first quantify the required training samples and iterations to train a Transformer model towards CoT ability. We then prove the success of its CoT generalization on unseen tasks with distribution-shifted testing data. Moreover, we theoretically characterize the conditions for an accurate reasoning output by CoT even when the provided reasoning examples contain noises and are not always accurate. In contrast, in-context learning (ICL), which can be viewed as one-step CoT without intermediate steps, may fail to provide an accurate output when CoT does. These theoretical findings are justified through experiments.


How Do Nonlinear Transformers Learn and Generalize in In-Context Learning?

arXiv.org Artificial Intelligence

Transformer-based large language models have displayed impressive in-context learning capabilities, where a pre-trained model can handle new tasks without fine-tuning by simply augmenting the query with some input-output examples from that task. Despite the empirical success, the mechanics of how to train a Transformer to achieve ICL and the corresponding ICL capacity is mostly elusive due to the technical challenges of analyzing the nonconvex training problems resulting from the nonlinear self-attention and nonlinear activation in Transformers. To the best of our knowledge, this paper provides the first theoretical analysis of the training dynamics of Transformers with nonlinear self-attention and nonlinear MLP, together with the ICL generalization capability of the resulting model. Focusing on a group of binary classification tasks, we train Transformers using data from a subset of these tasks and quantify the impact of various factors on the ICL generalization performance on the remaining unseen tasks with and without data distribution shifts. We also analyze how different components in the learned Transformers contribute to the ICL performance. Furthermore, we provide the first theoretical analysis of how model pruning affects ICL performance and prove that proper magnitude-based pruning can have a minimal impact on ICL while reducing inference costs. These theoretical findings are justified through numerical experiments.


Joint Unsupervised and Supervised Training for Automatic Speech Recognition via Bilevel Optimization

arXiv.org Artificial Intelligence

BL-JUST employs a lower and upper level optimization In general, bilevel optimization problems are optimization problems with an unsupervised loss and a supervised loss respectively, where the feasible set is determined (in part) using the solution leveraging recent advances in penalty-based bilevel optimization to set of a second optimization problem [10]. Determining the feasible solve this challenging ASR problem with affordable complexity and set is generally called the lower-level problem and the second parametric rigorous convergence guarantees. To evaluate BL-JUST, extensive optimization problem is called the upper-level problem [31, 29].


Soft Random Sampling: A Theoretical and Empirical Analysis

arXiv.org Artificial Intelligence

Soft random sampling (SRS) is a simple yet effective approach for efficient training of large-scale deep neural networks when dealing with massive data. SRS selects a subset uniformly at random with replacement from the full data set in each epoch. In this paper, we conduct a theoretical and empirical analysis of SRS. First, we analyze its sampling dynamics including data coverage and occupancy. Next, we investigate its convergence with non-convex objective functions and give the convergence rate. Finally, we provide its generalization performance. We empirically evaluate SRS for image recognition on CIFAR10 and automatic speech recognition on Librispeech and an in-house payload dataset to demonstrate its effectiveness. Compared to existing coreset-based data selection methods, SRS offers a better accuracy-efficiency trade-off. Especially on real-world industrial scale data sets, it is shown to be a powerful training strategy with significant speedup and competitive performance with almost no additional computing cost.


How Can Context Help? Exploring Joint Retrieval of Passage and Personalized Context

arXiv.org Artificial Intelligence

The integration of external personalized context information into document-grounded conversational systems has significant potential business value, but has not been well-studied. Motivated by the concept of personalized context-aware document-grounded conversational systems, we introduce the task of context-aware passage retrieval. We also construct a dataset specifically curated for this purpose. We describe multiple baseline systems to address this task, and propose a novel approach, Personalized Context-Aware Search (PCAS), that effectively harnesses contextual information during passage retrieval. Experimental evaluations conducted on multiple popular dense retrieval systems demonstrate that our proposed approach not only outperforms the baselines in retrieving the most relevant passage but also excels at identifying the pertinent context among all the available contexts. We envision that our contributions will serve as a catalyst for inspiring future research endeavors in this promising direction.


Reducing Exposure Bias in Training Recurrent Neural Network Transducers

arXiv.org Artificial Intelligence

When recurrent neural network transducers (RNNTs) are trained using the typical maximum likelihood criterion, the prediction network is trained only on ground truth label sequences. This leads to a mismatch during inference, known as exposure bias, when the model must deal with label sequences containing errors. In this paper we investigate approaches to reducing exposure bias in training to improve the generalization of RNNT models for automatic speech recognition (ASR). A label-preserving input perturbation to the prediction network is introduced. The input token sequences are perturbed using SwitchOut and scheduled sampling based on an additional token language model. Experiments conducted on the 300-hour Switchboard dataset demonstrate their effectiveness. By reducing the exposure bias, we show that we can further improve the accuracy of a high-performance RNNT ASR model and obtain state-of-the-art results on the 300-hour Switchboard dataset.


On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation

arXiv.org Artificial Intelligence

In the recent advances of natural language processing, the scale of the state-of-the-art models and datasets is usually extensive, which challenges the application of sample-based explanation methods in many aspects, such as explanation interpretability, efficiency, and faithfulness. In this work, for the first time, we can improve the interpretability of explanations by allowing arbitrary text sequences as the explanation unit. On top of this, we implement a hessian-free method with a model faithfulness guarantee. Finally, to compare our method with the others, we propose a semantic-based evaluation metric that can better align with humans' judgment of explanations than the widely adopted diagnostic or re-training measures. The empirical results on multiple real data sets demonstrate the proposed method's superior performance to popular explanation techniques such as Influence Function or TracIn on semantic evaluation.


Improving Efficiency in Large-Scale Decentralized Distributed Training

arXiv.org Machine Learning

Decentralized Parallel SGD (D-PSGD) and its asynchronous variant Asynchronous Parallel SGD (AD-PSGD) is a family of distributed learning algorithms that have been demonstrated to perform well for large-scale deep learning tasks. One drawback of (A)D-PSGD is that the spectral gap of the mixing matrix decreases when the number of learners in the system increases, which hampers convergence. In this paper, we investigate techniques to accelerate (A)D-PSGD based training by improving the spectral gap while minimizing the communication cost. We demonstrate the effectiveness of our proposed techniques by running experiments on the 2000-hour Switchboard speech recognition task and the ImageNet computer vision task. On an IBM P9 supercomputer, our system is able to train an LSTM acoustic model in 2.28 hours with 7.5% WER on the Hub5-2000 Switchboard (SWB) test set and 13.3% WER on the CallHome (CH) test set using 64 V100 GPUs and in 1.98 hours with 7.7% WER on SWB and 13.3% WER on CH using 128 V100 GPUs, the fastest training time reported to date. Index T erms -- distributed training, decentralized SGD, parallel computing, automatic speech recognition, image recognition.


Task-Based Learning via Task-Oriented Prediction Network

arXiv.org Machine Learning

Real-world applications often involve domain-specific and task-based performance objectives that are not captured by the standard machine learning metrics, such as mean squared error, mean absolute error, and cross-entropy loss, but are critical for decision making. A key challenge for direct integration of more meaningful domain and task-based evaluation criteria into an end-to-end gradient-based training process is the fact that often such performance objectives are not necessarily differentiable and may even require additional decision-making optimization processing. We propose Task-Oriented Prediction Network (TOPNet), an end-to-end learning scheme that automatically integrates task-based evaluation criteria into the learning process via a task-oriented estimator and directly learns a model with respect to the task-based goal. A major benefit of the proposed TOPNet learning scheme lies in its capability of automatically integrating non-differentiable evaluation criteria. This makes it particularly suitable for diversified and customized task-based evaluation criteria in real-world prediction tasks. We validate the performance of TOPNet on two real-world financial prediction tasks, revenue surprise forecasting and credit risk modeling. The experimental results on multiple real-world data sets demonstrate that TOPNet significantly outperforms both traditional modeling with standard losses and modeling with differentiable (relaxed) surrogate losses.