Goto

Collaborating Authors

 Cui, Wenjuan


CataLM: Empowering Catalyst Design Through Large Language Models

arXiv.org Artificial Intelligence

The field of catalysis holds paramount importance in shaping the trajectory of sustainable development, prompting intensive research efforts to leverage artificial intelligence (AI) in catalyst design. Presently, the fine-tuning of open-source large language models (LLMs) has yielded significant breakthroughs across various domains such as biology and healthcare. Drawing inspiration from these advancements, we introduce CataLM Cata}lytic Language Model), a large language model tailored to the domain of electrocatalytic materials. Our findings demonstrate that CataLM exhibits remarkable potential for facilitating human-AI collaboration in catalyst knowledge exploration and design. To the best of our knowledge, CataLM stands as the pioneering LLM dedicated to the catalyst domain, offering novel avenues for catalyst discovery and development.


NEEDED: Introducing Hierarchical Transformer to Eye Diseases Diagnosis

arXiv.org Artificial Intelligence

With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.